
A Semantics of K into Dedukti
Amélie Ledein # Ñ

Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France

Valentin Blot #Ñ

Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France

Catherine Dubois #Ñ

ENSIIE, Samovar, Évry-Courcouronnes, France

Abstract
K is a semantical framework for formally describing the semantics of programming languages thanks
to a BNF grammar and rewriting rules on configurations. It is also an environment that offers
various tools to help programming with the languages specified in the formalism. For example, it is
possible to execute programs thanks to the generated interpreter, or to check their properties thanks
to the provided automatic theorem prover called the KProver. K is based on Matching Logic, a
first-order logic with an application and fixed-point operators, extended with symbols to encode
equality, typing and rewriting. This specific Matching Logic theory is called Kore.

Dedukti is a logical framework having for main goal the interoperability of proofs between
different formal proof tools. Several translators to Dedukti exist or are under development, in order
to automatically translate formalizations written, for instance, in Coq or PVS. Dedukti is based
on the λΠ-calculus modulo theory, a λ-calculus with dependent types and extended with a primitive
notion of computation defined by rewriting rules. The flexibility of this logical framework allows to
encode many theories ranging from first-order logic to the Calculus of Constructions.

In this article, we present a paper formalization of the translation from K into Kore, and a
paper formalization and an automatic translation tool, called KaMeLo, from Kore to Dedukti in
order to execute programs in Dedukti.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases Programming language, Semantics, Rewriting, Logical framework, Type
theory

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.12

Supplementary Material Software: https://gitlab.com/semantiko/kamelo
archived at swh:1:dir:9353026d393b52e5bc149a469a3d2386fb923dff

Funding Amélie Ledein: Digicosme and EuroProofNet

Acknowledgements We want to thank the K team, especially Andrei Arusoaie, Xiaohong Chen,
Denisa Diaconescu, Everett Hildenbrandt, Zhengyao Lin, Dorel Lucanu, Ana Pantilie and Traian-
Florin Serbanuta for their prompt responses to our many questions.

1 Introduction

The main objective of formal methods is to obtain greater confidence in programs. Before
verifying a program, it must be written in a programming language whose syntax and
semantics are precisely known. Therefore, we must first have a formalization of the semantics
of the programming language used to write the program we wish to verify. Several tools make
it possible to write formal semantics for example Centaur [7], ASF+SDF [23], Ott [20],
Sail [3], Lem [17] or K [19, 2]. In this article, we are only interested in the latter, since
there are currently a large number of programming language semantics written in K such as
Java [6], C [13] or JavaScript [18].

© Amélie Ledein, Valentin Blot, and Catherine Dubois;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 12; pp. 12:1–12:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amelie.ledein@inria.fr
https://lmf.cnrs.fr/Perso/AmelieLedein
https://orcid.org/0000-0002-8122-7092
mailto:valentin.blot@inria.fr
https://valentinblot.org/pro/
mailto:catherine.dubois@ensiie.fr
https://www.ensiie.fr/~dubois
https://orcid.org/0000-0002-9477-8109
https://doi.org/10.4230/LIPIcs.TYPES.2022.12
https://gitlab.com/semantiko/kamelo
https://archive.softwareheritage.org/swh:1:dir:9353026d393b52e5bc149a469a3d2386fb923dff;origin=https://gitlab.com/semantiko/kamelo;visit=swh:1:snp:b7a2687611b749d144a4590e10087c7b6cab5f56;anchor=swh:1:rev:9351bfdac9b0047db82958a7ac572e0cba51bb55
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 A Semantics of K into Dedukti

K is a semantical framework that offers many features for writing a semantics such as
attributes to specify evaluation strategies. Once the semantics of a language L has been
specified, K allows to execute a program P written in L but also offers the possibility of
verifying some properties – expressed in the form of reachability properties – on the program
P using the automatic theorem prover KProver [21]. As it is possible to automatically
translate K semantics into a Matching Logic theory named Kore, the particularity of the
K framework is to see any semantics S of a programming language L as a logical theory ΓL.
That is the reason we look at the translation of K into Dedukti, which is a logical framework
based on the λΠ-calculus modulo theory having for main goal the interoperability of
proofs between different formal proof tools.

In this article, we are more particularly interested in the translation into Dedukti of
any semantics written in K in order to execute programs in Dedukti. Our first contribution
is a paper formalization of the translation from K into Kore. As no article has been yet
published on this translation, this contribution was elaborated by reverse engineering on
Kore files as well as thanks to discussions with the K team. Independently, we formalize
transformations similar to what was done in IsaK [15, 16], which is a formalization in
Isabelle – but not based on Kore – of the static and dynamic semantics of K. In addition,
the second contribution is a paper formalization and an automatic tool, called KaMeLo [1],
from Kore to Dedukti in order to execute programs in Dedukti. The general overview
of the translation pipeline presented in this article is available in Figure 1. This is the first
translation into Dedukti involving a semantical framework.

Kore

K

Matching
Logic

can be translated into

based on

Dedukti

λΠ-calculus
modulo theory

based on

KaMeLo

High-level language
Language
Logic
Logical framework

Figure 1 Overview of the translation pipeline presented in this article.

A long-term goal is not only to execute a program P written with the formalized language
L within Dedukti, but also to verify the proofs established by the KProver, or even make
this proof with Dedukti if the KProver has failed, and also formally check meta-properties
about the language L. This long-term goal can be seen as a new pipeline for program
verification, which is parametrized by a programming language and leaves the user free to
choose the proof assistant they wish.

This article is structured as follows: first, we explain how to write a K semantics (Section 2).
Then, we present a mathematical structure M to abstract K in order to formalize some
internal transformations that K does on semantics (Section 3). Thanks to the mathematical
structure M, we formalize a computational translation T into the λΠ-calculus modulo
theory (Section 4). Finally, we present our implementation of T (Section 5).



A. Ledein, V. Blot, and C. Dubois 12:3

In the following, the keywords of a language or what is native in a language will be
distinguished by color. The language of Dedukti will be distinguished by a blue color,
the language of K by an orange color and the language of Kore by a red color. These
facilitate reading but are not necessary for understanding.

2 What is the K framework?

This section introduces the K framework by explaining how to write a semantics using a
small example, and then by presenting the diversity of K features. This section ends with
the K grammar that we consider in the rest of this article.

2.1 A first K semantics
In this subsection, we show an example based on booleans and two binary symbols, which
are lazily evaluated, to illustrate how to write a semantics in K. As usual, the first step to
formalize a semantics is to define the syntax and then the semantics associated to the syntax.

2.1.1 Define the syntax of a language
Defining the syntax of a language in K is similar to writing a BNF grammar. This is done in
the module LAZY-SYNTAX (Figure 2 - lines 1 to 9) with the definition of booleans, which
are typed by sort MyBool, a lazy disjunction, noted ||, and a lazy conjunction, noted &&.
A terminal symbol will be written between quotes, as for example ”||”, and anything else
in bold will therefore be a non-terminal symbol. In order to make the syntax parseable, it
is possible to use attributes, i.e. keywords between square brackets, allowing to specify the
associativity (left, right, non-assoc) or to add parentheses to the language (bracket).
We explain the other possible attributes as we go along. Moreover, K supports the Kleene
operators “*” and “+”, written List and NeList respectively.

1 module LAZY-SYNTAX
2 syntax MyBool ::= ”true” [ constructor ]
3 | ”false” [ constructor ]
4 syntax KResult ::= MyBool
5 syntax BExp ::= MyBool
6 | BExp ”||” BExp [ left, function ]
7 | BExp ”&&” BExp [ left, constructor, strict(1) ]
8 | ”(” BExp ”)” [ bracket ]
9 endmodule
10 module LAZY
11 imports LAZY-SYNTAX
12 configuration <k> $PGM : BExp </k>

13 rule false || B => B
14 rule true || _ => true

15 rule true && B => B
16 rule false && _ => false
17 endmodule

Figure 2 Syntax and semantics of booleans, a lazy disjunction and a lazy conjunction.

The subtyping relation between the sorts MyBool and BExp (Figure 2 - line 5) means
that the boolean values true and false are also boolean expressions. In addition, any
symbol has either the attribute constructor, when the symbol is an element of the syntax,
or the attribute function, when the symbol is a helper function used to define the semantics,
e.g. functions to manipulate the environment.

TYPES 2022



12:4 A Semantics of K into Dedukti

2.1.2 Define the semantics associated to the syntax
The main ingredients for defining the semantics of each element of the syntax are configurations
and rewriting rules. Some attributes are also useful to define evaluation strategies. The
semantics of a lazy disjunction and a lazy conjunction is defined in the module LAZY
(Figure 2 - lines 10 to 17) which imports the syntax module (line 11 thanks to imports).

2.1.2.1 Configurations

A configuration models the state of the program and is composed of cells. For example,
the configuration ⟨⟨ x = 10; ⟩k ⟨ x 7→ 0 ⟩env⟩ is composed of two cells, one labelled by k

containing the program to be executed and the other labelled by env containing the current
values of the variables. In the example in Figure 2, the configuration contains only the cell k

(line 12). The configuration variable $PGM will contain the parsed program given by the user.

2.1.2.2 Rewriting rules

A K rewriting rule is a 1st order rule which can be either conditional, noted rule LHS =>
RHS requires Cond, or unconditional, noted rule LHS => RHS. Moreover, a K rewriting
rule can be non-linear, i.e. variables in the left-hand side can appear several times. The
variables in the left-hand side (LHS) can be omitted using a wildcard (_) when they are not
used in the right-hand side (RHS), as in the rule on line 14 or 16 (Figure 2). Finally, K
supports partial rewriting modulo ACUI, i.e. associativity (assoc), commutativity (comm),
identity (unit) and idempotence (idem).

Any K rewriting rule can be applied to a whole configuration, if the rewriting rule defines
the semantics associated to the syntax, or does not mention the configuration, if the rewriting
rule defines a helper function. This distinction is illustrated more precisely in the next
paragraph.

2.1.2.3 Evaluation strategies

To define an evaluation strategy, i.e. specifying the order in which the sub-expressions are
evaluated, it is possible to use contexts (context) as is conventionally done, but also context
aliases (context alias) which allow contexts to be generated automatically rather than
systematically writing similar contexts.

There are also two attributes for defining an evaluation strategy: strict defines non-
deterministic strategies and seqstrict defines deterministic strategies from left to right by
default. It is also possible to restrict the list of sub-expressions that must be evaluated by
giving a list of numbers as done in Figure 2. Indeed, the attribute strict(1) forces the
evaluation of the first argument of the symbol &&, and then it is possible to apply one of the
rules on line 15 or 16. To use these attributes, the user needs to define the sort KResult
which allows to distinguish final values from expressions thanks to subtyping. For instance,
as MyBool is a sub-sort of KResult (Figure 2 - line 4), a final value is either false or true.

Whichever way an evaluation strategy is defined, it is translated using K computations
and freezers. A K computation is a list of computations to be performed sequentially and
built with the constructors . and ↷, whereas a freezer is a symbol that encapsulates the
part of the computation that should not yet be modified, i.e. the tail of the K computation,
while waiting for the head of the K computation to be evaluated. This mechanism is inspired
by evaluation contexts [26] and continuations v ↷ C.
The rewriting rules generated by strict(1) (Rules n°1 and n°2, with the attributes heat
and cool) as well as an example of an execution are detailed in Figure 3. Freezers are noted



A. Ledein, V. Blot, and C. Dubois 12:5

(❄nb
sym arg) where sym is a symbol, nb the number of the argument whose value we expect,

and arg the list of other arguments. As the symbol && has the attribute constructor, the
rules on lines 15 and 16 (Figure 2) are respectively translated by K into the rules n°3 and
n°4 (Figure 3). In contrast, as the symbol || has the attribute function, so K does not
transform the rules on lines 13 and 14 (Figure 2). The translation of the attribute strict(1)
into rewriting rules is similar in the case of attributes strict and seqstrict.

1. rule ⟨ E1 && E2 ↷ S ⟩k => ⟨ E1 ↷ (❄1
&& E2) ↷ S ⟩k requires ¬ (isKResult E1) [ heat ]

2. rule ⟨ E1 ↷ (❄1
&& E2) ↷ S ⟩k => ⟨ E1 && E2 ↷ S ⟩k requires isKResult E1 [ cool ]

3. rule ⟨ true && B ↷ S ⟩k => ⟨ B ↷ S ⟩k
4. rule ⟨ false && _ ↷ S ⟩k => ⟨ false ↷ S ⟩k

⟨ (true && false) && (true && true) ↷ . ⟩k
↪→1 ⟨ (true && false) ↷ (❄1

&& (true && true)) ↷ . ⟩k
↪→3 ⟨ false ↷ (❄1

&& (true && true)) ↷ . ⟩k
↪→2 ⟨ false && (true && true) ↷ . ⟩k

↪→4 ⟨ false ↷ . ⟩k

abstracted by

⟨ e1 && e2 ↷ s ⟩k
↪→1 ⟨ e1 ↷ (❄1

&& e2) ↷ s ⟩k
↪→3 ⟨ v1 ↷ (❄1

&& e2) ↷ s ⟩k
↪→2 ⟨ v1 && e2 ↷ s ⟩k

↪→4 ⟨ v1 ↷ s ⟩k

Figure 3 Translation of the attributes strict(1) and an example execution.

In this article, a rewriting rule that has a constructor symbol as its head is called
semantical, and a rewriting rule that has a function symbol as its head is called evaluation.
The attributes assoc, comm, unit and idem generate equations, named equational rules. A
rewriting rule with the attribute heat or cool is called an evaluation strategy rule.

2.2 Additional features
The previous subsection illustrated the main K features. However, there are many other
features, coming from attributes or the K standard library, in order to bring more precision
to a semantics.

2.2.1 Definable features thanks to the attributes
K has about 70 attributes. Papers about K, e.g. [19], mention very few of them and the
documentation [2] is not exhaustive and complete. However, many features require the use
of attributes. This section presents the list of attributes in Figure 4 that we hope to be as
exhaustive as possible.

About importation. Alibrary ≜ { hook }
Avisibility ≜ { public, private }
Abackend ≜ { symbolic, concrete, kast, kore }

About parsing. Aparsing ≜ { left, right, non-assoc, prefer, avoid, applyPriority }
Asort ≜ { token, locations, hook }
Atoken ≜ { prefer, prec(nb ), hook }

About printing. Aprinting ≜ { color, colors, symbol, klabel, bracketLabel,
format, latex, unused }

About symbol. Afamily ≜ { constructor, function, token, bracket, macro }
Aproperty ≜ { injective, total, freshGenerator, binder }
Astrategy ≜ { strict, seqstrict, result, hybrid }

About cell. Astructure ≜ { multiplicity= {"+" | "*" }, type=" ⟨sort⟩" }
Aconsole ≜ { exit=" ⟨sort⟩", stream= {"stdin" | "stdout" | "stderr" } }

About rewriting. Amodulo ≜ { assoc, comm, unit, idem }
Arule ≜ { heat, cool,

priority(nb ), owise, anywhere, unboundVariables }
About proof. AKProver ≜ { symbolic, concrete, all-path, one-path, simplification,

trusted, smtlib, smt-lemma, smt-hook, memo }

Figure 4 List of K attributes as exhaustive as possible.

TYPES 2022



12:6 A Semantics of K into Dedukti

About importation. What comes from the K standard library, briefly presented in Sec-
tion 2.2.2, has the attribute hook. Furthermore, we can specify the visibility of a module or
an import (Avisibility) or that a module is only useful for some backends (Abackend).

About parsing. The user can precise constraints about parsing such as the associativity
of symbols (left, right, non-assoc) but also to reject cases of parsing ambiguity (prefer,
avoid, applyPriority). Moreover, it is possible to type a part of the AST by declaring
particular identifiers (token) that can be used later in the semantics. The precedence of a
token is given by the attribute prec(nb ). Sorts with the attribute token are only composed
of symbols with the attribute function or token, and only these sorts can be composed of
token symbols. Finally, K is able to insert file, line and column meta-data into the parse
tree on a subtree of type s when parsing, when the sort s has the attribute locations.

About printing. There are also some attributes to change colors of printing in the console
(color, colors), the names (symbol, klabel, bracketLabel) and the printing (format) of
the symbols and to define a latex name (latex). Moreover, K will warn the user if a symbol
is declared but not used in any of the rules. The user can disable this warning for a particular
symbol or cell by adding the attribute unused.

About symbol. Compared to an evaluation strategy defined with the attributes strict
and seqstrict (Section 2.1.2.3), it is possible to develop more complex ones thanks to the
attributes result and hybrid. For example, these attributes can allow lists of values to be
considered as values.

A symbol can be (1) a constructor, (2) a function, (3) a token, (4) a bracket or (5) a macro
(Afamily). Functions can be defined as injective (injective) or total (total, formerly called
functional). Moreover, it is possible to request K to generate fresh values and use them
with fresh variables !Var (freshGenerator) and also to define binder (binder).

About cell. The user can choose if a cell is optional (multiplicity="?") or can appear
several times (multiplicity="*"). These attributes allow the user to design a set of cells,
which type can be defined by sorts List, Set or Map thanks to the attribute type. Moreover,
each cell can have a console exit value (exit) or can print on the standard stream (stream).

About rewriting. Theoretically rewriting rules can be applied in any order, but K allows
the user to associate a priority to each rule (priority(nb )) or to indicate that a rule applies
only if no other can apply (owise). Moreover, the attribute anywhere can be used to prevent
K from automatically computing the configuration in a rewriting rule. Finally, it is also
possible to allow variables to be unbound in the left-hand side of a rewriting rule thanks to
the attribute unboundVariables or with unbound variables ?Var.

The semantics of most of these attributes are specified in the rest of this article.

2.2.2 Definable features thanks to the K standard library
The K standard library is composed of eight files. The file prelude.md is imported into any
K definition and contains only two lines that import the following two files: domains.md
which defines the types of several usual data structures, for instance, the sorts Bytes, Array,
Map, Set, List, Bool, Int, String or Float, and kast.md which corresponds to the syntax
of K. Moreover, the file rat.md is an implementation of the rational integers, the file



A. Ledein, V. Blot, and C. Dubois 12:7

substitution.md is an implementation allowing substitution (required by the attribute
binder), and the file unification.md is an implementation allowing unification. Finally,
the two last files are ffi.md which allows C functions to be called and json.md which allows
JSON files to be read. The three following symbols are also defined: . : K [constructor ],
↷ : KItem × K → K [constructor ] and inj : ∀ (From, To : K), From → To.

2.3 A K grammar

To conclude this section, we present the overview of the translation from K semantics which is
available in Figure 5 and formalized in the next section. The K grammar that we consider in
this article is available in Figure 6. A K file can contain several modules (module/endmodule).
It is possible to import files into another file (requires or require) or to import one or more
modules into another module (imports or import). Additionally, an attribute is associated
to a module (Amodule), a sort (Asort), a symbol (Asymbol), a cell (Acell), a rewriting rule
(Arule), a context (Acontext) or a context alias (Acontext−alias). Moreover, a configuration
variable begins with $ such as $PGM, a fresh variable begins with ! and an unbound variable
in a rewriting rule begins with ?. Finally, there are three cast operators noted :, :: and :>.

The K grammar in Figure 6 is almost complete. In order not to make it too heavy, we
have omitted a part of the syntax allowing to declare precedence and associativity of symbols
since this is only useful for the generation of the K parser extended with the user-defined
language L (Figure 5).

In addition, we consider that the declarations with at least one of the attributes related
to symbolic execution (AKProver) have been deleted as well as the syntactic sugar has been
simplified. For example,
syntax BExp ::= MyBool | BExp ”&&” BExp is syntactic sugar for
syntax BExp ::= MyBool
syntax BExp ::= BExp ”&&” BExp. We do not take into account either the syntax ...
or the fact that the rewriting arrow => can be nested following Li and Gunter [15] who
explain that this syntax is ambiguous syntactic sugar. We assume that the syntactic sugar is
simplified by the black box “Desugar” (Figure 5).

In this article, we only consider a K semantics if K accepts it as well as the K grammar
(Figure 6) – after deleting a part of the syntax and the syntactic sugar.

K syntax
and

semantics
of the

language L

∧
Accept the K semantics

Reject the K semantics

Desugar

Check with the
grammar (Fig. 6)

Generate the
parser of K + L

thanks to
the K syntax

Check with the
parser of K + L

Add the
dependencies

Abstract
K syntax
(Fig. 7)

Transform
K abstract

(Fig. 8 to 14)
Printing
(Fig. 15)

Kore

KAST

true

false

Figure 5 Overview of the translation from K semantics.

We just explained the two first black boxes in Figure 5. Other boxes are explained (black
one) or formalized (white one) in the next section.

TYPES 2022



12:8 A Semantics of K into Dedukti

⟨carac⟩ ::= [ a-zA-Z | 0-9 | - | _ ]
⟨int⟩ ::= [ 1-9 ][ 0-9 ]*
⟨string⟩ ::= " ⟨carac⟩* "
⟨name-module⟩ ::= ⟨carac⟩+
⟨symbol⟩ ::= ⟨carac⟩+
⟨str-of-reg-expr⟩ ::= a regular expression between quotes

⟨require⟩ ::= ( require | requires ) " ⟨carac⟩+ [ .k | .md ] "
⟨import⟩ ::= ( import | imports ) [ public | private ]? ⟨name-module⟩

⟨sort⟩ ::= [A-Z #] ⟨carac⟩*
⟨sort-syntax⟩ ::= syntax ⟨sort⟩ ( [ token | locations | Asort

+
, ] )?

| syntax ⟨sort⟩ ::= ⟨sort⟩ ( [ token ] )?

⟨terminal⟩ ::= ⟨string⟩
⟨non-terminal⟩ ::= ⟨sort⟩
⟨syntax-item⟩ ::= ⟨terminal⟩ | ⟨non-terminal⟩
⟨separator⟩ ::= ⟨string⟩
⟨syntax⟩ ::= syntax [ { ⟨sort⟩+, } ]? ⟨sort⟩ ::= ⟨symbol⟩( ⟨sort⟩∗, ) [ Asymbol

∗
, ]

| syntax [ { ⟨sort⟩+, } ]? ⟨sort⟩ ::= ⟨syntax-item⟩+ [ Asymbol
∗
, ]

| syntax ⟨sort⟩ ::= r ⟨str-of-reg-expr⟩ [ { token } ∪ Atoken
∗
, ]

| syntax ⟨sort⟩ ::= List { ⟨sort⟩, ⟨separator⟩ }
| syntax ⟨sort⟩ ::= NeList { ⟨sort⟩, ⟨separator⟩ }

⟨config-variable⟩ ::= $[A-Z]+
⟨initial-value⟩ ::= ⟨symbol⟩ | ⟨config-variable⟩
⟨cell⟩ ::= < ⟨name⟩ Acell

∗
, > ⟨initial-value⟩ [ : ⟨sort⟩ ]? < / ⟨name⟩>

| < ⟨name⟩ Acell
∗
, > ⟨cell⟩+ < / ⟨name⟩>

⟨configuration⟩ ::= configuration ⟨cell⟩+

⟨variable⟩ ::= [ ? | ! ]? [A-Z] ⟨carac⟩* | _
⟨pattern⟩ ::= ( ⟨variable⟩ | ⟨symbol⟩ ) [ : ⟨sort⟩ | :: ⟨sort⟩ ]?

| { ⟨pattern⟩+ } :> ⟨sort⟩
⟨rule⟩ ::= rule ⟨pattern⟩+ => ⟨pattern⟩+ [ requires ⟨pattern⟩+ ]? [ Arule

∗
, ]

⟨context⟩ ::= context ⟨pattern⟩+ [ requires ⟨pattern⟩+ ]? ([ Acontext
+
, ])?

⟨context-alias⟩ ::= context alias [ ⟨carac⟩+ ]: ⟨pattern⟩+ ([ Acontext−alias
+
, ])?

⟨sentence⟩ ::= ⟨sort-syntax⟩ | ⟨syntax⟩
| ⟨configuration⟩ | ⟨rule⟩
| ⟨context⟩ | ⟨context-alias⟩

⟨module⟩ ::= module ⟨name-module⟩ ([ Amodule
+
, ])?

⟨import⟩*
⟨sentence⟩*

endmodule

⟨file⟩ ::= ⟨require⟩* ⟨module⟩*

where Amodule ≜ Avisibility ∪ Abackend ∪ { not-lr1 }
Asymbol ≜ Aparsing ∪ Afamily ∪ Aproperty ∪ Astrategy ∪ Amodulo ∪ Aprinting ∪ Avisibility

Acell ≜ Astructure ∪ Aconsole ∪ { unused="", color= ⟨string⟩ }
Acontext ≜ { result }

Acontext−alias ≜ { result, context }

Figure 6 The considered K grammar, where X is any element of X.



A. Ledein, V. Blot, and C. Dubois 12:9

3 Abstracting the K framework

This section presents a mathematical structure M which abstracts the syntax of K. After the
presentation of the structure M as well as the translation of the K syntax into the structure
M, we present various transformations of the structure M that correspond to the static
semantics of K. To present this work, we start with the output of the black box “Add the
dependencies” (Figure 5) that recursively replaces each require command with the contents
of these files, and then recursively replaces each import command with the contents of the
module that must be imported. We consider that the output of the black box is a single
module whose name corresponds to the name of the main initial semantics file. At this
stage, the following attributes have finished influencing the transformation: hook, Avisibility,
Abackend, not-lr1, Aparsing, token, Atoken, locations, Aprinting and AKProver.

3.1 An abstract view of K
To abstract a K file, we use the 7-uplet M ≜ (Sort, Rel, Sym, Config, R, Context,
Contextalias), where Sort is the set of sorts, Rel is the set of subtyping relations, Sym

is the set of symbols, Config is the set of configurations, R is the set of rewriting rules,
Context is the set of contexts and Contextalias is the set of context aliases. Figure 7 shows
the translation || . || of K syntax to the abstract structure M. Syntactic declarations can
create sorts, subtyping relations between two sorts, or symbols. As K allows mixfix notations,
we translate them into prefix notations such as || syntax Exp ::= ”if” Bool ”then” Exp
”else” Exp || = || syntax Exp ::= if-then-else(Bool, Exp, Exp) ||. Moreover, a
configuration declaration generates a list of trees l. Section 3.2 shows that l is transformed
into a single tree. Finally, any unconditional rewriting rule can be seen as a conditional rule
with the condition “true”.

|| syntax s ( [ Attr ] )? || = Sort ← { s }
|| syntax s1 ::= s2 ( [ Attr ] )? || = Sort ← { s1 ; s2 } ; Rel ← { s2 < s1 }
|| syntax { α1, ..., αn } α ::= sym ( s1, ..., sx ) [ Attr ] || with n ≥ 0 and x ≥ 0 =
Sort ← { α ; s1 ; ... ; sx } \ { α1, ..., αn } ;
Sym ← { sym : ∀α1, ..., ∀αn, s1 × ...× sx → α [Attr] }

|| syntax { α1, ..., αn } α ::= i1 ... ix [ Attr ] || with n ≥ 0 and x ≥ 1 =
|| syntax { α1, ..., αn } α ::= t1-...-tn ( s1, ..., sx ) [ Attr ] ||

where ti ∈ Iterminal ≜ { ik | k ∈ J1; xK and ik ∈ ⟨terminal⟩ }
si ∈ Inon−terminal ≜ { ik | k ∈ J1; xK and ik ∈ ⟨non-terminal⟩ }

|| syntax s ::= r ⟨str-of-reg-expr⟩ [ Attr ] || = Sort ← { s }
|| syntax s1 ::= List { s2, sep } || = Sort ← { s1 ; s2 }
|| syntax s1 ::= NeList { s2, sep } || = Sort ← { s1 ; s2 }

|| configuration cell1 ... celln || with n ≥ 1 = Config ← { (|| cell1 ||rec ; ... ; || celln ||rec) }
|| < C > v : s </ C > ||rec = [C]s(v) (If s is not given, we can infer it from v.)
|| < C > cell1 ... celln </ C > ||rec = <C>(|| cell1 ||rec, ..., || celln ||rec)

|| rule LHS => RHS [ Attr ] || = R ← { (LHS
true
↪→ RHS [Attr]) }

|| rule LHS => RHS requires Cond [ Attr ] || = R ← { (LHS
Cond
↪→ RHS [Attr]) }

|| context C ([ Attr ])? || = Context ← { (C, true, Attr) }
|| context C requires Cond ([ Attr ])? || = Context ← { (C, Cond, Attr) }
|| context alias [ label ]: CA ([ Attr ])? || = Contextalias ← { (label, CA, Attr) }

Figure 7 From K to an abstract 7-uplet, where X ← data is the set X extended with data.

The following subsection explains the internal transformations made by K from the
obtained mathematical structure M.

TYPES 2022



12:10 A Semantics of K into Dedukti

3.2 Compilation of a K semantics
This subsection formalizes the transformations on the previous mathematical structure M
that correspond to the static semantics of K. After these transformations, the 7-uplet M
will become a quadruplet. As we abstract the content of the K standard library by the sets
Sortlib, Rellib Symlib and Rlib, we initially assume that Sort = Sortlib, Rel = Rellib, Sym

= Symlib and R = Rlib whereas Config, Context and Contextalias are empty. The goal of
the first transformation (Figure 8) is to check the validity of a K semantics.

Each symbol should be a constructor, a function, a token, a bracket or a macro. If this is
not the case, it means that the symbol is implicitly a constructor. We therefore explicitly
add the attribute constructor, which defines the new set Sym′ (Figure 8). Regarding the
attribute macro, the documentation is not precise enough. According to Li and Gunter [14],
macros are subject to many errors when writing semantics, but in practice macros are always
considered as syntactic sugar. The associated rewriting rules are used only once at the
beginning of an evaluation of the input programs, to rewrite the syntactic sugar into another
term. Macros can therefore be replaced by functions as they are not more expressive.

Moreover, a semantics must have only one configuration, and some attributes have precise
restrictions such as the attributes strict and seqstrict are incompatible with function,
while a bracket symbol of a given sort has only one argument of that sort.

|| (Sort, Rel, Sym, Config, R, Context, Contextalias) ||check-input =
(Sort, Rel, Sym′, Config′, R, Context, Contextalias)

where
C ≜ { s ∈ Sym | constructor ∈ Attr(s) }
F ≜ { s ∈ Sym | function ∈ Attr(s) }
T ≜ { s ∈ Sym | token ∈ Attr(s) }
B ≜ { s ∈ Sym | bracket ∈ Attr(s) }
Ma ≜ { s ∈ Sym | macro ∈ Attr(s) }
W ≜ Sym \ (C ∪ F ∪ T ∪ B ∪ Ma)
W ′ ≜ { n : ∀−→v ,

−→
t → α [Attr ∪ {constructor}] | n : ∀−→v ,

−→
t → α [Attr] ∈ W }

Sym′ ≜ C ∪ F ∪ T ∪ B ∪ Ma ∪ W ′

Config′ ≜ [k]K($PGM) if Config = ∅; Config if card(Config) = 1
Constraints:

The set { C, F , T , B, Ma, W } must be a partition of Sym.
Config is the empty set or a singleton, where each cell have a unique name.
For all n : ∀−→v ,

−→
t → α [Attr] ∈ F , { strict, seqstrict } ∩ Attr = ∅.

For all n : ∀−→v ,
−→
t → α [Attr] ∈ B, −→v = −→0 and −→t = α.

Figure 8 Formalization of the function || . ||check-input.

Generate evaluation strategy rules thanks to contexts and context aliases. We have
seen that to define evaluation strategies in K, we can define context aliases, contexts
or use the attributes strict and seqstrict. We assume the existence of a function
|| . ||delete-context-alias that transforms a context alias into contexts as well as a function
|| . ||delete-context that transforms a context into rewriting rules. The lack of information in
the documentation prevents us from formalizing these two functions.

Generate evaluation strategy rules thanks to attributes. We formalize the rule generation
from the attributes strict and seqstrict (when the attributes result and hybrid are
not also used) in Figure 9, where nbArg(sym) is the number of argument(s) of the symbol
sym and n is implicitly used to denote the arity of a symbol. For example, rules 1. and 2.
(Figure 3) illustrate the translation formalized in Figure 9.



A. Ledein, V. Blot, and C. Dubois 12:11

|| (Sort, Rel, Sym, Config, R) ||generate-strategy = (Sort, Rel, Sym′, Config, R′)
where

Sstrict ≜ { s ∈ Sym | strict ∈ Attr(s) }
Sseqstrict ≜ { s ∈ Sym | seqstrict ∈ Attr(s) }
Freezer ≜ { ❄

nj
sym : K× ...× K︸ ︷︷ ︸

nbArg(sym)−1

→ KItem [constructor ]

| and strict (n1,...,nk) ∈ Attr(sym)
or seqstrict (n1,...,nk) ∈ Attr(sym) }

Sym′ ≜ Sym ∪ Freezer

R′ ≜ R ∪ Rstrict ∪ Rseqstrict
Constraint:

Every argument of the attribute strict or seqstrict should be in [1; arity(sym)].
Rstrict is composed of the following rewriting rules:

For all sym ∈ Sstrict such that strict (n1,...,nj) ∈ Attr(sym), for all k ∈ { n1, ..., nj }:
sym E1 ... En

c
↪→ Ek ↷ (❄k

sym E1 ... Ek−1 Ek+1 ... En) [heat ], where c ≜ ¬ (isKResult Ek)
Ek ↷ (❄k

sym E1 ... Ek−1 Ek+1 ... En)
c

↪→ sym E1 ... En [cool ], where c ≜ isKResult Ek

Rseqstrict is composed of the following rewriting rules:
For all sym ∈ Sseqstrict such that seqstrict (n1,...,nj) ∈ Attr(sym), for all k ∈ { n1, ..., nj }:
sym E1 ... En

c
↪→ Ek ↷ (❄k

sym E1 ... Ek−1 Ek+1 ... En) [heat ]
where c ≜ isKResult E1 ∧ ... ∧ isKResult Ek−1 ∧ ¬ (isKResult Ek)

Ek ↷ (❄k
sym E1 ... Ek−1 Ek+1 ... En)

c
↪→ sym E1 ... En [cool ], where c ≜ isKResult Ek

Figure 9 Formalization of the function || . ||generate-strategy.

Encapsulate the configuration. According to the grammar in Figure 6, a configuration is a
list of finite branching trees. However K encapsulates any configuration [cell1;...; celln] as
follows: <GT>(<T>(cell1,..., celln), [GC]Int(0)), where GT ≜ GeneratedTop and GC ≜
GeneratedCounter. For instance, the initial configuration from Figure 2 becomes
⟨ ⟨ ⟨ $PGM : BExp ⟩k ⟩T ⟨ 0 ⟩GC ⟩GT .
Thus, after this transformation, any configuration becomes a single finite branching tree.

Generate implicit cells. Now that we have generated the full configuration, we formalize
the completion of the rewriting rules in Figure 10. For instance, the result of mgconf Config

is ⟨ ⟨ ⟨ pgm ⟩k ⟩T ⟨ c ⟩GC ⟩GT , where Config is the initial configuration of Figure 2, pgm

and c are fresh variables. Moreover, rule 4. from Figure 3 becomes:
rule ⟨ ⟨ ⟨ false && _ ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT => ⟨ ⟨ ⟨ false ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT .

|| (Sort, Rel, Sym, Config, R) ||add-cell = (Sort, Rel, Sym, Config, R′)
where

R′ ≜ { || l
c

↪→ r [Attr] ||x | l
c

↪→ r [Attr] ∈ R and x ≜ mgconf Config }
with mgconf (<C>(Cell1, ..., Celln)) ≜ <C>(mgconf Cell1, ..., mgconf Celln)

mgconf ([C]s(v)) ≜ [C]s(f), where f is a fresh variable
with || l

c
↪→ r [Attr] ||x ≜ l

c
↪→ r [Attr], if the head symbol of l is a function symbol

l
c

↪→ r [Attr], if anywhere ∈ Attr

l
x c

↪→ r x [Attr], otherwise
with p x ≜ x [

−−−−→
[C]s(y) \

−−−−→
[C]s(v) ] where

−−−−→
[C]s(v) are the leaves appearing in p

Figure 10 Formalization of the function || . ||add-cell.

Split the configuration. Now we are ready to decompose the configuration into sorts and
symbols. The generated rewriting rules are useful to complete the initial configuration with
the value given by the user thanks to the configuration variable. The formalization is available
in Figure 11, where GT ≜ GeneratedTop and GC ≜ GeneratedCounter.

TYPES 2022



12:12 A Semantics of K into Dedukti

|| (Sort, Rel, Sym, Config, R) ||split-config = (Sort′, Rel, Sym′, R′)
where

Sort′ ≜ Sort ∪ { SortC | <C>(c1, ..., cn) ∈ Config }
Symcell ≜ { C : Type ( <C>(c1, ..., cn) ) [constructor ] | <C>(c1, ..., cn) ∈ Config}
Syminit ≜ { initC : SortC [function, initializer ] | <C>(c1, ..., cn) ∈ Config}
Symget ≜ { getGC : SortGT → SortGC [function ] }
Sym′ ≜ Sym ∪ Symcell ∪ Syminit ∪ Symget

Rinit ≜ { initC ↪→ C((GetInit c1), ..., (GetInit cn)) [initializer ]
| <C>(c1, ..., cn) ∈ Config}

R′ ≜ R ∪ Rinit ∪ { getGC(GT(X,V)) ↪→ V }
with Type ( <X>(c1, ..., cn) ) ≜ RetType(c1) × ... × RetType(cn) → SortX

with RetType ( <X>(c1, ..., cn) ) ≜ SortX

RetType ( [X]s(v) ) ≜ s

with GetInit ( <X>(c1, ..., cn) ) ≜ initX

GetInit ( [X]s(v) ) ≜ v

Figure 11 Formalization of the function || . ||split-config.

For example, the symbol initK : SortK and the rule initK ↪→ K $PGM are generated
as well as the symbols GT : SortT × SortGC → SortGT and T : SortK → SortT.

Add implicit attributes. Implicitly, every symbol with the attribute constructor also has
the attributes total, formerly called functional, and injective, as formalized in Figure 12.

|| (Sort, Rel, Sym, R) ||add-attributes = (Sort, Rel, Sym′, R)
where

Sconstructor ≜ { s ∈ Sym | constructor ∈ Attr(s) }
S′

constructor ≜ { n : ∀−→v ,
−→
t → α [Attr ∪ {total, injective}]

| n : ∀−→v ,
−→
t → α [Attr] ∈ Sconstructor }

Sym′ ≜ (Sym \ Sconstructor) ∪ S′
constructor

Figure 12 Formalization of the function || . ||add-attributes.

Manage the fresh values. When using a K rewriting rule, any occurrence of a fresh variable
!X is replaced by the current value presents in the cell GeneratedCounter and the current
value of the cell GeneratedCounter is replaced by a new one. For instance, the rewriting
rule rule ⟨ ⟨ ⟨ foo X ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT => ⟨ ⟨ ⟨ !X ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT becomes
rule ⟨ ⟨ ⟨ foo X ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT => ⟨ ⟨ ⟨ c ↷ S ⟩k ⟩T ⟨ c + 1 ⟩GC ⟩GT .

Add type-related symbols and extend the typing hierarchy. Implicitly, every user-defined
sort is a sub-sort of KItem. Moreover, K generates projection symbols and predicate symbols
such as isKResult, as shown in Figure 13.

|| (Sort, Rel, Sym, R) ||typing = (Sort, Rel′, Sym′, R′)
where

Rel′ ≜ Rel ∪ {s < KItem | s ∈ Sort \ { K ; KItem } }
Fprojection ≜ { projs : K → s [projection, function ] | s ∈ Sort \ { K } }
Fpredicate ≜ { iss : K → Bool [predicate, function, total ] | s ∈ Sort }
Sym′ ≜ Sym ∪ Fprojection ∪ Fpredicate

Rprojection ≜ { s (injKItem
t X) ↪→ X [projection ]

| s ∈ Fprojection if t is the output type of s }
Rpredicate ≜ { p (injKItem

s X) ↪→ true [ ] | p ∈ Fpredicate if s is the output sort of p }
Rpred−owise ≜ { p X ↪→ false [owise ] | p ∈ Fpredicate }
R′ ≜ R ∪ Rprojection ∪ Rpredicate ∪ Rpred−owise

Figure 13 Formalization of the function || . ||typing.



A. Ledein, V. Blot, and C. Dubois 12:13

Checking the coherence of the typing hierarchy. We can construct a graph where the
nodes are elements of Sort and the edges are modelled by the elements of Rel. We reject
the semantics if the graph contains at least one cycle.

Add injections. K adds injections (inj) to get full well-typed terms. This step takes into
account the constraints of semantic casts (:), strict casts (::) and projection casts (:>).

Checking the constraints on the attribute binder. The first argument of a symbol with
the attribute binder must have the sort KVar, which is a native K sort. Then, to do a
substitution, it is the responsibility of each backend to correctly implement the interface
proposed by K, i.e. the file substitution.md.

Checking the constraints on List and NeList. It is not possible to add two or more List
or/and NeList constructions at the same time to the same sort. For example, it is not
allowed to write syntax Exp ::= List{Int,","} | List{Bool,","}.

Checking the constraints on the K standard library. The user cannot extend the K
standard library with constructor symbols, so the set
{ n : ∀−→v ,

−→
t → α [Attr] ∈ Sym | constructor ∈ Attr and α ∈ Sortlib } should be empty.

That is the reason why we named a sort MyBool and not Bool in Figure 2.

Checking the constraints on rewriting rules. Finally, each rewriting rule needs to respect
the BNF in Figure 14 and the sort of every condition must be boolean.

a ::= x | (σ a ... a) x is a variable
b ::= x | (σ b ... b) | (f b ... b) σ is a constructor symbol
c ::= f b ... b f is a function symbol
rule ::= σ a ... a ↪→ b | σ a ... a

c
↪→ b

| f a ... a ↪→ b | f a ... a
c

↪→ b

Figure 14 Constraints on rewriting rules.

We have presented the various translations carried out internally by K. We do not claim
that this list is exhaustive but it reflects our understanding of the translation from K to
Kore. This paper formalization was elaborated by reverse engineering on Kore files as well
as thanks to discussions with K developpers. It seems possible to print a (almost always valid)
new K file after each transformation but this has not been implemented. So far only the
following attributes have not been taken into account during the transformation: Amodulo,
{ priority(), owise }, { multiplicity, type, exit, stream } and { injective, total }.

3.3 From K to Kore
We present the translation from the abstraction of K into Kore (Figure 15). Thanks to the
obtained quadruplet, we can translate a K semantics into a specific Matching Logic theory
named Kore. Every red keyword can be translated into a Matching Logic pattern but this
translation is beyond the scope of this article. The pattern φsym can take 3 different forms
corresponding to the axioms of injectivity, non-overlapping and exhaustivity of constructors.

4 From the K framework to the λΠ-calculus modulo theory

This section presents the λΠ-calculus modulo theory and Dedukti, a logical framework
based on it. Then, we formalize the translation from K to the λΠ-calculus modulo

TYPES 2022



12:14 A Semantics of K into Dedukti

|| (Sort, Rel, Sym, R) ||Kore =
sort s{α1,...,αn} [ ] for all s ∈ Sort \ Sortlib

hooked-sort s{α1,...,αn} [ ] for all s ∈ Sortlib

symbol sym{α1,...,αn}(θ1,...,θm) : θ’ [ Attr ] for all sym ∈ Sym \ Symlib

hooked-symbol sym{α1,...,αn}(θ1,...,θm) : θ’ [ Attr ] for all sym ∈ Symlib

axiom {R} \exists {R}(x2 : θ2,
\equals {θ2, R}(x2 : θ2, inj {θ1, θ2}(x1 : θ1))) [ subsort (θ1, θ2) ] for all θ1 < θ2 ∈ Rel

axiom {R} \exists {R}(x : θ,
\equals {θ, R}(x : θ, sym x1 ... xn)) [ total ] for all sym ∈ Stotal

axiom {α1,...,αn} φsym [ constructor ] for all sym ∈ Sconstructor
axiom {R} \equals {θ, R}( sym(sym(x1 : θ, x2 : θ), x3 : θ),

sym(x1 : θ, sym(x2 : θ, x3 : θ))) [ assoc ] for all sym ∈ Sassoc
axiom {R} \equals {θ, R}(sym(x1 : θ, x2 : θ),

sym(x2 : θ, x1 : θ)) [ comm ] for all sym ∈ Scomm
axiom {R} \equals {θ, R}(sym(e, x : θ), x : θ) [ unit ]
axiom {R} \equals {θ, R}(sym(x : θ, e), x : θ) [ unit ] for all sym ∈ Sunit
axiom {R} \equals {θ, R}(sym(x : θ, x : θ), x : θ) [ idem ] for all sym ∈ Sidem

axiom {R} \implies {R}(c, \equals {R, R}(l, r)) [ Attr ] for all l
c

↪→ r [Attr] ∈ Rfunction

axiom {R} \rewrites {R}(\and {R}(c, l), r) [ Attr ] for all l
c

↪→ r [Attr] ∈ Rconstructor

where Sa ≜ { s ∈ Sym | a ∈ Attr(s) } and Ra ≜ { l
c

↪→ r [Attr] ∈ R | a ∈ Attr(head(l)) }

Figure 15 The printer to Kore.

theory. This translation has been implemented in a tool written in OCaml, named
KaMeLo, which is presented in the next section.

4.1 The λΠ-calculus modulo theory
The λΠ-calculus modulo theory, λΠ≡T in short, is a logical framework, i.e. allowing
to define theories, introduced by Cousineau and Dowek [10]. λΠ≡T is an extension of the
λ-calculus with dependent types and a primitive notion of computation defined thanks to
rewriting rules [11]. The syntax as well as the typing rules that define the λΠ≡T are available
in Figure 16, where the typing judgment Γ ⊢ t : A means that the term t has type A with
respect to the context Γ. The specific typing judgment Γ ⊢ A : Type indicates that A is a
type under the context Γ. We also consider a signature Σ, and a set of higher-order rewriting
rules R. In this framework, for any rewriting rule l ↪→ r ∈ R, FV (r) ⊆ FV (l) holds (where
FV (p) is the set of free variables of p). The use of such a rewriting rule requires that for any
substitution σ, the instantiation of its left-hand side lσ and the instantiation of its right-hand
side rσ are well-typed with the same type (Γ ⊢ lσ : A and Γ ⊢ rσ : A for a certain type A).

Syntax s := Type | Kind sort
t := s | c | x | t t | λ(x : t).t | Π(x : t).t term
Γ := ∅ | Γ, x : t context

where c is a constant of Σ,
x is a variable

Typing
(sort)

Γ ⊢ Type : Kind

Γ ⊢ A : Type
(const) (c : A) ∈ Σ

Γ ⊢ c : A

Γ ⊢ A : Type
(var) (x : A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ f : Π(x : A).B Γ ⊢ a : A
(app)

Γ ⊢ f a : B{x\a}

Γ ⊢ Π(x : A).B : s Γ, x : A ⊢ b : B
(abs)

Γ ⊢ λ(x : A).b : Π(x : A).B

Γ ⊢ A : Type Γ, x : A ⊢ B : s
(prod)

Γ ⊢ Π(x : A).B : s

Γ ⊢ t : A Γ ⊢ B : s(conv) A ≡βR B
Γ ⊢ t : B

(≡reduc)
Γ ⊢ (λ(x : A).t) u ≡ t{x\u}

Γ ⊢ lσ : A Γ ⊢ rσ : A(≡rule) l ↪→ r ∈ R
Γ ⊢ lσ ≡ rσ

where s ∈ {Type ; Kind}, B{x\a} is the substitution of a for x in B, and ≡βR is the reflexive,
transitive, symmetric and contextual closure of ≡, generated by the rules ≡reduc and ≡rule.

Figure 16 Syntax and typing of λΠ≡T with a signature Σ and a rewriting system R.



A. Ledein, V. Blot, and C. Dubois 12:15

Note that in the conversion rule (conv), the equivalence relation depends not only on
β-reduction but also on the rewriting system R. Moreover, in order to have the decidability
of the type-checking, the condition A ≡βR B of the rule (conv) must be decidable, which is
ensured when the considered rewriting systems are convergent. Finally, contexts can contain
ill-formed elements and the order of the elements does not matter. Indeed, thanks to the
rule (var), only well-formed elements in the context can be used when doing a proof. This
presentation has been proved equivalent to the usual presentations by Dowek [12].

4.2 Dedukti
Dedukti [4, 5] is a logical framework based on the λΠ≡T . Indeed, expressing the Calculus
of Constructions in Dedukti is equivalent to defining it as a theory of the λΠ≡T . Several
logics have been encoded in Dedukti, facilitating the interoperability of proofs between
various formal tools [9, 22]. In this section, we only present the features available in Dedukti
needed in this article.

Typing and symbols. The syntax of the λΠ≡T is directly accessible in Dedukti: TYPE
(Kind is not accessible to the user but only inferred by the system), λ (abstraction), Π
(dependent product). We write A → B when the dependent product Π (x : A), B is not
dependent, i.e. when x /∈ FV (B).

The signature is defined from symbols. If the declaration of a symbol is made with the
keyword symbol alone, the symbol is said to be defined, without any particular property,
whereas with the additional keyword constant, the symbol is said to be constant and can
not be reduced by any rewriting rule.

Rewriting rules. A Dedukti rule is written rule LHS ↪→ RHS in which the free variables
are noted $x, $y, etc. As in K, it is possible to use a wildcard (_) on the left-hand side when
a free variable is not used in the right-hand side. Dedukti rules allow higher-order, can be
non-linear and do not necessarily apply to the head of the term, but are not conditional.

4.3 Translation from abstract K to the λΠ-calculus modulo theory
Section 3 presented an abstract version of K: any K file can thus be reduced to a set of sorts,
subtyping relations, symbols and rewriting rules. Figure 17 presents the translation of these
sets into the λΠ-calculus modulo theory.

|| (Sort, Rel, Sym, R) ||λΠ≡T =
K : Type
s : K for all s ∈ Sort \ {K}
n : Π(a1 : α1), ..., Π(an : αn), Π(t1 : τ1), ..., Π(tn : τn), α for all n : ∀−→α ,−→τ → α [Attr] ∈ Sym
l ↪→ r for all l ↪→ r ∈ Runconditional

|| Rconditional ||CTRS
|| (Rel, Sym, Rstrategy) ||strategy

where Runconditional ≜ { l ↪→ r | l
c

↪→ r [Attr] ∈ R if c = true }
where Rconditional ≜ { l

c
↪→ r [Attr] | l

c
↪→ r [Attr] ∈ R if c ̸= true and { heat, cool } ∩ Attr = ∅ }

where Rstrategy ≜ { l
c

↪→ r [Attr] | l
c

↪→ r [Attr] ∈ R if heat ∈ Attr or cool ∈ Attr }

Figure 17 From abstract K to the λΠ≡T .

Any sort becomes a symbol of type K, except the sort K itself, which has the type Type.
Symbols and unconditional rules are unchanged and the set of rewriting rules obtained
at the end of the translation || . ||λΠ≡T is { l ↪→ r | for all l ↪→ r ∈ Runconditional } ∪
|| Rconditional ||CTRS ∪ || (Rel, Sym, Rstrategy) ||strategy. The translation function || . ||CTRS is
explained in Section 4.3.1 and the translation function || . ||strategy is explained in Section 4.3.2.

TYPES 2022



12:16 A Semantics of K into Dedukti

4.3.1 Translating conditional rewriting rules
In this section, we are interested in the translation of conditional rewriting rules. As
conditional rewriting rules are not primitive in λΠ≡T , it is necessary to find an encoding of
a conditional rewriting system (CTRS) into a non-conditional rewriting system (TRS).

4.3.1.1 From a CTRS to a TRS: Examples

We present two examples to illustrate the encoding of a CTRS into a TRS.

An example without owise. Consider the following system:
(1) max X Y

c
↪→ Y , where c ≜ X < Y

(2) max X Y
c

↪→ X, where c ≜ X ≥ Y .
The resulting encoding is available in Figure 18 as well as an execution.

(0) max X Y ↪→ ♭max X Y ♭ ♭ max 5 3 ↪→0 ♭max 5 3 ♭ ♭
(1′) ♭max X Y ♭ C ↪→ ♭max X Y (X < Y ) C ↪→1′ ♭max 5 3 (5 < 3) ♭
(1′′) ♭max X Y true C ↪→ Y ↪→∗ ♭max 5 3 false ♭
(2′) ♭max X Y C ♭ ↪→ ♭max X Y C (X ≥ Y ) ↪→2′ ♭max 5 3 false (5 ≥ 3)
(2′′) ♭max X Y C true ↪→ X ↪→∗ ♭max 5 3 false true ↪→2′′ 5

Figure 18 Rules generated with the variant of Viry’s encoding (left) and a computation (right).

The general idea of the encoding, proposed in this section and initially proposed by
Viry [24], is to add as many arguments as there are conditions for a symbol defined with
conditional rules. In Figure 18, rule (0) rewrites a term whose head symbol is max into
a term using the corresponding extended version of arity 4, ♭max here, where all boolean
arguments are ♭, indicating that the boolean arguments have not yet been initialised by a
condition. Rules (1′) and (2′) initialize the conditions to be computed whereas rules (1′′)
and (2′′) reduce the size of the term since one of the conditions has been evaluated to true.
This encoding has the advantage of not fixing the order of evaluation of the conditions but
increases the computation time by doubling the initial number of rules.

Contrary to Viry, we choose to extend the signature, as here with the symbol ♭max,
rather than replacing each symbol of the signature by an equivalent symbol with a greater
arity. This choice makes it possible to follow the computations of the conditions and does
not force us to translate the obtained normal forms.

An example with owise. The previous example can also be written more succinctly:
max X Y

c
↪→ Y , where c ≜ X < Y

max X Y ↪→ X [owise]
To encode the attribute owise, we have two possibilities: implement an algorithm that
determines the complementary condition or consider that all conditions necessarily reduce to
either true or false. According to the expressiveness of the conditions that can be written
in K (Figure 14), we add the following hypothesis: any boolean function is a total function.
Under this assumption, it is not required to compute the complementary condition as we
can generate a rule where every boolean argument is false, as shown in Figure 19. This case
is formalized in 5.(c) (Figure 20).

Furthermore, K accepts a set of unconditional rules with at least one rule having the
attribute owise. We exclude this case because we cannot model “If no other rule applies”,
with a boolean condition. This is equivalent to the use of the attribute priority(nb ), with
which we do not yet take into account.



A. Ledein, V. Blot, and C. Dubois 12:17

(0) max X Y ↪→ ♭max X Y ♭
(1′) ♭max X Y ♭ ↪→ ♭max X Y (X < Y )
(1′′) ♭max X Y true ↪→ Y
(2′) ♭max X Y false ↪→ X

Figure 19 Rules generated with the variant of Viry’s encoding, when the attribute owise is used.

4.3.1.2 From a CTRS to a TRS: Formalization

We present the translation, noted || . ||CTRS previously, as an algorithm in Figure 20. This
translation takes as argument a set R of conditional rewriting rules

c

l ↪→ r [Attr]. To avoid
naming conflicts, we also assume that ♭ is an unused symbol name and that it does not
appear in the head of any symbol name.

According to Figure 10, we need to change the definition of the head symbol of a rule.
We note head<k> the function computing the head symbol of the cell <k>, for a given rule,
without considering the symbols ., ↷ and inj. Now, we are able to define the function
returning the head symbol of a rule:

head(l c
↪→ r [Attr]) =

{
head<k>(l c

↪→ r) if the rule is a semantical rule and anywhere /∈ Attr

f otherwise, where l ≜ f a ... a (Figure 14)
We also define the set of rules noted Cσ, in which the rules share the same head symbol σ,
that is Cσ ≜ { l

c
↪→ r [Attr] | head (l c

↪→ r [Attr]) = σ }. We assume that, if there is a rule
with the attribute owise in Cσ for a given σ, all the other rules in Cσ must have a condition.

After calculating each set Cσ from R, we run the algorithm presented in Figure 20, for
each Cσ, where X is the number of conditional rules in Cσ.

1. If X = 0, Cσ is unchanged and the algorithm stops. Otherwise, initialize i to 0 and go to 2.
2. Generate the most general left-hand side for a given symbol σ, noted mglhsσ.
3. Generate the extended symbol ♭σ of type T1 → ...→ Tn−1 → ♭Bool→ ...→ ♭Bool→ Tn,

with X argument(s) of type ♭Bool, where ♭Bool = Bool∪{♭}, and σ of type T1× ...×Tn−1 → Tn.
4. Generate the substitution rule: mglhsσ ↪→ mglhsσ[ updatesame(σ, ♭σ, ♭) ]σ

5. For each rule l
c

↪→ r [Attr] ∈ Cσ:
a. If c ̸= true and owise /∈ Attr:

Increment i by 1
Generate the initialization rule:
l [ updatediff (σ, ♭σ, ♭, i, _) ]σ ↪→ l [ updatediff (σ, ♭σ, c, i, _) ]σ
Generate the reduction rule: l [ updatediff (σ, ♭σ, true, i, _) ]σ ↪→ r

b. If c = true and owise /∈ Attr:
Generate the reduction rule: l [ updatesame(σ, ♭σ, _) ]σ ↪→ r

c. If c = true and owise ∈ Attr:
Generate the reduction rule: l [ updatesame(σ, ♭σ, false) ]σ ↪→ r

where:
* t1[t2]σ means that we substitute t2 for the subterm with the head symbol σ in t1.
* argi(t) corresponds to the i-th argument of t and arity(t) to the number of arguments of t.
* mglhsσ ≜ (mgconf init-config) [ [k]K(x) \ [k]K((injKItem

RetT ype(σ) σ f1 ... farity(σ)) ↷ L) ],
where init-config is the initial configuration, and fi and L are fresh variables.

* updatediff (σ, ♭σ, s1, i, s2) = ♭σ x1 ... xarity(σ)+X with xj =

 argj(σ) if 1 ≤ j ≤ arity(σ)
s1 if j = arity(σ) + i

s2 otherwise

* updatesame(σ, ♭σ, s) = ♭σ x1 ... xarity(σ)+X with xj =
{

argj(σ) if 1 ≤ j ≤ arity(σ)
s otherwise

Figure 20 Variant of Viry’s encoding.

TYPES 2022



12:18 A Semantics of K into Dedukti

4.3.2 Translating evaluation strategies
As we saw in Section 3.2, some conditional rewriting rules can be generated during the
translation of K to Kore, as is the case for the evaluation strategies defined by the attributes
strict and seqstrict. The rewriting rules generated by these attributes require the
translation of the K computations, i.e. the symbols . and ↷, the freezers but also the
predicate isKResult. However, these conditional rewriting rules are part of a known case
where Viry’s encoding is not confluent, notably because the order of application of some
rewriting rules modifies the result of the condition, which can stop the computation. Figure 21
shows the translation of the rules of Figure 3 with Viry’s encoding (on the right) and an
example of a valid but stuck execution1 (on the left).

1 E1 && E2 ↷ C ↪→ (true && true) && false ↷ .
♭&& E1 E2 ♭ ↷ C ↪→1 ♭&& (true && true) false ♭ ↷ .

2 ♭&& E1 E2 ♭ ↷ C ↪→ ↪→2 ♭&& (true && true)
♭&& E1 E2 (not(isKResult E1)) ↷ C false

3 ♭&& E1 E2 true ↷ C ↪→ E1 ↷ (❄1
&& E2) ↷ C (not(isKResult (true && true))) ↷ .

4 E1 ↷ (❄1
&& E2) ↷ C ↪→ ↪→∗ ♭&& (true && true) false true ↷ .

(♭❄1
&& E1 E2 ♭) ↷ C ↪→3 (true && true) ↷ (❄1

&& false) ↷ .
5 (♭❄1

&& E1 E2 ♭) ↷ C ↪→ ↪→4 (♭❄1
&& (true && true) false ♭) ↷ .

(♭❄1
&& E1 E2 (isKResult E1)) ↷ C ↪→5 (♭❄1

&& (true && true)
6 (♭❄1

&& E1 E2 true) ↷ C ↪→ E1 && E2 ↷ C false
7 true && B ↷ C ↪→ B ↷ C (isKResult (true && true))) ↷ .
8 false && _ ↷ C ↪→ false ↷ C ↪→∗ (♭❄1

&& (true && true) false false) ↷ .

Figure 21 Rules generated with previous encoding (left) and a stuck execution (right).

Intuitively, these rules are used to ensure that E1 is of a specific sort in order to allow or
not its evaluation. The idea of our new encoding is to specialize some terms of the rules, i.e.
to refine the pattern-matching in order to ensure the desired type. For example, rule 2. in
Figure 3 becomes ⟨ (injKItem

Bool E1) ↷ (❄1
&& E2) ↷ S ⟩k ↪→ ⟨ (injBExp

Bool E1) && E2 ↷ S ⟩k,
where we force E1 to have the sort Bool. Thus this rule can be used only if the term E1
is a fully computed Boolean expression. Morevoer, rule 1. in Figure 3 becomes the single
rule ⟨ (X1 && X2) && E2 ↷ S ⟩k ↪→ ⟨ (X1 && X2) ↷ (❄1

&& E2) ↷ S ⟩k because there is only
one constructor associated to BExp and no token symbol. Symbols with the attribute
function or macro are not considered, because they are not allowed in the left-hand side of
a rule, as well as symbols with the attribute bracket, because these ones disappear during
the compilation process of K. The full formalization is available in Figure 22.

|| (Rel, Sym, R) ||strategy = R′

where
Sub ≜ { s | s < KResult ∈ Rel }
Rcool ≜ { r ∈ R | cool ∈ Attr(r) }
R′

cool ≜ { (l ↪→ r) [ x \ injKItem
s x ] | l

c
↪→ r ∈ Rcool where c ≜ (isKResult x), s ∈ Sub }

Rheat ≜ { r ∈ R | heat ∈ Attr(r) }
Ss2

s1 ≜ { injs2
s f | where f is a fresh variable and s ∈ ({ s | s < s1 ∈ Rel} \ Sub) }

Ps2
s1 ≜ { injs2

s1
(n
−→
f ) | where

−→
f are fresh variables and n : ∀−→v ,

−→
t → α [Attr] ∈ Sym

if α = s1 and { constructor, token } ∩ Attr ̸= ∅ }
R′

heat ≜ { (l ↪→ r) [ x1, ... , xk \ injKItem
s1

x1, ... , injKItem
sk

xk ] [ injs2
s1

x \ t ]
| l

c
↪→ r ∈ Rheat and (s1, ..., sk) ∈ Subk and t ∈ (Ss2

s1 ∪ P
s2
s1 ),

where c ≜ (isKResult x1 ∧ ... ∧ isKResult xk ∧ ¬ (isKResult injs2
s1

x) }
R′ ≜ R \ (Rheat ∪ Rcool) ∪ (R′

heat ∪R′
cool)

Figure 22 Specialization of the evaluation strategy rules.

1 It is also possible to obtain false.



A. Ledein, V. Blot, and C. Dubois 12:19

4.3.3 Semantics preservation
The soundness of the translation is not formally proved in this article. Informally, our
translation seeks to ensure that the program executed in the K framework and the program
executed in Dedukti have the same behaviour. If the language described is deterministic,
K and Dedukti compute the same value or give the same final state. If the language is
non-deterministic, K allows to obtain all possible final configurations. In Dedukti, it is only
possible to obtain one final configuration, because the algorithm is deterministic.

As previously, we assume that every condition is reducible into false or true. We also
assume that the K semantics does not use the following attributes: no cell of the configuration
has one of the attributes multiplicity, stream, type, exit, no evaluation strategy based on
result or hybrid, and no rewriting rule has the attribute priority(), unboundVariables,
assoc, comm, unit or idem. Lastly, we assume that, for a given symbol, among the associated
evaluation rules, only one rule has the attribute owise and in this case, other rules must
have a condition.

The two following parts present the soundness and completeness statements, thanks to
the function | . | which is translated a K term into a Dedukti one by induction on Term(K):

| sym x1 ... xn | ≜ ˙sym | x1 | ... | xn |, if ˙sym ∈ ΣDedukti,
| x | ≜ x, where x is a variable

4.3.3.1 Soundness

The next conjecture helps to assert that any derivation in K is also a derivation in Dedukti.

▶ Conjecture 1. For any K rewriting step l ↪→ r, there is a DK derivation | l | ↪→∗ | r |.

▶ Corollary (From K to Dedukti). For every derivation l ↪→∗ r in K, there is a derivation |
l | ↪→∗ | r | in Dedukti.

4.3.3.2 Completeness

We note F lat the set of every term starting with ♭.
We note Ghost the set of every term having at least one symbol in F lat.

▶ Lemma 1. | . | : Term(K) → Term(Dedukti) \ Ghost is a bijection.

We define the translation function || . ||K2DK : Term(K) → Term(Dedukti) such that
|| t ||K2DK = | t | and the detranslation function || . ||DK2K : Term(Dedukti) → Term(K) such

that || t ||DK2K =
{

| t |−1 if t /∈ Ghost

|| t ||forget if t ∈ Ghost
.

The function forget is defined inductively on Term(Dedukti):
|| sym x1 ... xn ||forget ≜ sym || x1 ||forget ... || xn ||forget, if sym /∈ F lat

|| ♭sym x1 ... xn ||forget ≜ sym || x1 ||forget ... || xi ||forget,
if ♭sym ∈ F lat, where xi+1 ... xn are conditions

|| x ||forget ≜ x, where x is a variable

The following conjecture states that any derivation in Dedukti is also a derivation in K,
except if the derivation begins or ends with a term generated by the Viry encoding.

▶ Conjecture 2 (From Dedukti to K). For every derivation l ↪→∗ r in Dedukti, there is a
derivation || l ||DK2K ↪→∗ || r ||DK2K in K if l /∈ Ghost or r /∈ Ghost.

▶ Corollary (Preservation of confluence). If the rewriting system R written in K is confluent,
then the translation of the rewriting system R in Dedukti is confluent.

TYPES 2022



12:20 A Semantics of K into Dedukti

▶ Corollary (Preservation of termination). If the rewriting system R written in K is termi-
nating, then the translation of the rewriting system R in Dedukti is terminating.

5 Implementation and examples

This section focuses on the implementation of the translations presented in the previous
section, i.e. on the tool KaMeLo [1] which allows to translate Kore into Dedukti.

5.1 KaMeLo in a nutshell
In practice, the formalizations presented in Section 3.2 as well as the printer to Kore
(Figure 15) correspond to the command kompile implemented by the K team. Like the
command krun, also implemented by the K team, KaMeLo allows programs translated
into Kore to be executed in Dedukti thanks to the K semantics translated into Kore.
KaMeLo implements the translation formalized in Figure 20 and Figure 22.

Moreover, it is the responsibility of each backend to implement the K standard library and
to support the appropriate attributes. The backend KaMeLo does not support the attributes
multiplicity, stream, type, exit, result, hybrid, priority(), unboundVariables,
assoc, comm, unit and idem. The implementation of the K standard library in Dedukti is
available on https://gitlab.com/semantiko/DK-BiblioteKo.

5.2 KaMeLo in action
From a semantics of 84 lines of a simple while-language similar to IMP in [25], it is possible
to obtain a Kore file of 4 130 lines (18 sorts, 5 hooked sorts, 102 symbols, 78 hooked symbols
and 552 axioms). However, in order to execute a program, the axioms with the attributes
subsort, total, constructor, assoc, comm, unit or idem do not need to be translated.
The translation of this semantics in Dedukti has 723 lines (122 symbols and 122 rewriting
rules). To execute the following program computing the GCD of x and y

decl x, y ; x = 20 ; y = 15 ;
while not( (y <= x) and (x <= y) ) do

{ if y < x then x = x - y ; else y = y - x ; }

the command $ krun --depth 0 --output kore GCD.imp allows to translate the program
in Kore. After translating it into Dedukti, the result is: <generatedTop> (<T> (<k> .)
(<env> (inj y 7→ inj 5) ; (inj x 7→ inj 5))) (<generatedCounter> 0);.
The source code of KaMeLo [1] is joined by some tests as the one presented here.

6 Conclusion

This article presents a paper formalization of the translation from K into Kore and, a paper
formalization and an automatic tool, called KaMeLo, from Kore to Dedukti, in order
to execute programs in Dedukti. There has already been a translation of a programming
language in Dedukti [8, 9], but this is the first time a semantical framework has been
translated into Dedukti.

This work needs to be extended to take into account the attributes priority()/owise,
multiplicity/type and result/hybrid. The attributes assoc, comm, unit, idem and
unboundVariables can theoretically not be translated in the general case.

https://gitlab.com/semantiko/DK-BiblioteKo


A. Ledein, V. Blot, and C. Dubois 12:21

The verification of proof objects generated by the KProver as well as the encoding
of the theoretical foundations of K into those of Dedukti, are not in the scope of this
article and will be the subject of future work. The translation presented here is nevertheless
necessary to run a program and will be reused for proof checking.

References

1 GitLab of KaMeLo. URL: https://gitlab.com/semantiko/kamelo.
2 Website of K. URL: https://kframework.org/.
3 Website of Sail. URL: https://www.cl.cam.ac.uk/~pes20/sail/.
4 Ali Assaf, Guillaume Burel, Raphal Cauderlier, David Delahaye, Gilles Dowek, Catherine

Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Expressing
theories in the λΠ-calculus modulo theory and in the Dedukti system. In TYPES: Types for
Proofs and Programs, Novi SAd, Serbia, May 2016. URL: https://hal-mines-paristech.
archives-ouvertes.fr/hal-01441751.

5 Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and François Thiré.
Some axioms for mathematics. In Naoki Kobayashi, editor, 6th International Conference on
Formal Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos
Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 20:1–20:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.20.

6 Denis Bogdănaş and Grigore Roşu. K-Java: A Complete Semantics of Java. In Proceedings
of the 42nd Symposium on Principles of Programming Languages (POPL’15), pages 445–456.
ACM, January 2015. doi:10.1145/2676726.2676982.

7 Patrick Borras, Dominique Clément, Th. Despeyroux, Janet Incerpi, Gilles Kahn, Bernard
Lang, and V. Pascual. CENTAUR: The System. In Peter B. Henderson, editor, Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, Boston, Massachusetts, USA, November 28-30, 1988, pages 14–24.
ACM, 1988. doi:10.1145/64135.65005.

8 Raphaël Cauderlier and Catherine Dubois. ML Pattern-Matching, Recursion, and Rewriting:
From FoCaLiZe to Dedukti. In ICTAC 2016 - 13th International Colloquium on Theoretical
Aspects of Computing, volume 9965 of LNCS, pages 459–468, Taipei, Taiwan, October 2016.
doi:10.1007/978-3-319-46750-4_26.

9 Raphaël Cauderlier and Catherine Dubois. FoCaLiZe and Dedukti to the rescue for proof
interoperability. In Mauricio Ayala-Rincón and César A. Muñoz, editors, ITP 2017: Interna-
tional Conference on Interactive Theorem Proving, page 532, Brasília, Brazil, September 2017.
doi:10.1007/978-3-319-66107-0_9.

10 D. Cousineau and Gilles Dowek. Embedding Pure Type Systems in the Lambda-Pi-Calculus
Modulo. In TLCA, 2007.

11 Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, pages 243–320, 1990.

12 Gilles Dowek. Interacting Safely with an Unsafe Environment. CoRR, abs/2107.07662, 2021.
arXiv:2107.07662, doi:10.4204/EPTCS.337.3.

13 Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the Undefinedness of C. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15), pages 336–345. ACM, June 2015. doi:10.1145/2813885.2737979.

14 Liyi Li and Elsa L. Gunter. IsaK: A Complete Semantics of K. Technical report, University of
Illinois at Urbana-Champaign, June 2018. URL: https://hdl.handle.net/2142/100116.

15 Liyi Li and Elsa L. Gunter. IsaK-static: A complete static semantics of K. In Formal Aspects of
Component Software - 15th International Conference, FACS 2018, Proceedings, pages 196–215.
Springer-Verlag Berlin Heidelberg, 2018. doi:10.1007/978-3-030-02146-7_10.

TYPES 2022

https://gitlab.com/semantiko/kamelo
https://kframework.org/
https://www.cl.cam.ac.uk/~pes20/sail/
https://hal-mines-paristech.archives-ouvertes.fr/hal-01441751
https://hal-mines-paristech.archives-ouvertes.fr/hal-01441751
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/64135.65005
https://doi.org/10.1007/978-3-319-46750-4_26
https://doi.org/10.1007/978-3-319-66107-0_9
https://arxiv.org/abs/2107.07662
https://doi.org/10.4204/EPTCS.337.3
https://doi.org/10.1145/2813885.2737979
https://hdl.handle.net/2142/100116
https://doi.org/10.1007/978-3-030-02146-7_10


12:22 A Semantics of K into Dedukti

16 Liyi Li and Elsa L. Gunter. A Complete Semantics of K and Its Translation to Isabelle.
In Antonio Cerone and Peter Csaba Ölveczky, editors, Theoretical Aspects of Computing –
ICTAC 2021, pages 152–171, Cham, 2021. Springer International Publishing.

17 Dominic Mulligan, Scott Owens, Kathryn Gray, Tom Ridge, and Peter Sewell. Lem: Reusable
Engineering of Real-world Semantics. ACM SIGPLAN Notices, 49, August 2014. doi:
10.1145/2628136.2628143.

18 Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A Complete Formal Semantics
of JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15), pages 346–356. ACM, June 2015. doi:
10.1145/2737924.2737991.

19 Grigore Ros,u and Traian Florin S, erbănută. An overview of the K semantic framework. The
Journal of Logic and Algebraic Programming, 79(6):397–434, August 2010. doi:10.1016/j.
jlap.2010.03.012.

20 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnĭsa. Ott: Effective tool support for the working semanticist. Journal of
Functional Programming, 20(1):71–122, 2010. doi:10.1017/S0956796809990293.

21 Andrei Stefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu. Semantics-based
program verifiers for all languages. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages
74–91, Amsterdam Netherlands, October 2016. ACM. doi:10.1145/2983990.2984027.

22 François Thiré. Sharing a library between proof assistants: Reaching out to the HOL
family. Electronic Proceedings in Theoretical Computer Science, 274:57–71, July 2018. doi:
10.4204/eptcs.274.5.

23 M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
Asf+Sdf Meta-environment: A Component-Based Language Development Environment. In
Reinhard Wilhelm, editor, Compiler Construction, pages 365–370, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. doi:10.1007/3-540-45306-7_26.

24 Patrick Viry. Elimination of Conditions. Journal of Symbolic Computation, 28(3):381–401,
1999. doi:10.1006/jsco.1999.0288.

25 Glynn Winskel. The formal semantics of programming languages - an introduction. Foundation
of computing series. MIT Press, 1993.

26 A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,
115(1):38–94, November 1994. doi:10.1006/inco.1994.1093.

https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.4204/eptcs.274.5
https://doi.org/10.4204/eptcs.274.5
https://doi.org/10.1007/3-540-45306-7_26
https://doi.org/10.1006/jsco.1999.0288
https://doi.org/10.1006/inco.1994.1093

	1 Introduction
	2 What is the K framework?
	2.1 A first K semantics
	2.1.1 Define the syntax of a language
	2.1.2 Define the semantics associated to the syntax

	2.2 Additional features
	2.2.1 Definable features thanks to the attributes
	2.2.2 Definable features thanks to the K standard library

	2.3 A K grammar

	3 Abstracting the K framework
	3.1 An abstract view of K
	3.2 Compilation of a K semantics
	3.3 From K to Kore

	4 From the K framework to the lambda-Pi-calculus modulo theory
	4.1 The lambda-Pi-calculus modulo theory
	4.2 Dedukti
	4.3 Translation from abstract K to the lambda-Pi-calculus modulo theory
	4.3.1 Translating conditional rewriting rules
	4.3.2 Translating evaluation strategies
	4.3.3 Semantics preservation


	5 Implementation and examples
	5.1 KaMeLo in a nutshell
	5.2 KaMeLo in action

	6 Conclusion

