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Abstract
Lately, the model of (Decision) Stochastic Timed Automata (DSTA) has been proposed, to model
those Cyber Physical Systems displaying dense time (physical part), discrete actions and discontinu-
ities such as timeouts (cyber part). The state of the art results on controlling DSTAs are however
not ideal: in the case of infinite horizon, optimal controllers do not exist, while for timed bounded
behaviors, we do not know how to build such controllers, even ε-optimal ones.

In this paper, we develop a theory of Reinforcement Planning in the setting of DSTAs, for
discounted infinite horizon objectives. We show that optimal controllers do exist in general. Further,
for DSTAs with 1 clock (which already generalize Continuous Time MDPs with e.g. timeouts), we
provide an effective procedure to compute ε-optimal controllers. It is worth noting that we do not rely
on the discretization of the time space, but consider symbolic representations instead. Evaluation
on a DSTA shows that this method can be more efficient. Last, we show on a counterexample that
this is the furthest this construction can go, as it cannot be extended to 2 or more clocks.
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1 Introduction

Controlling Cyber Physical Systems (CPSs) is an important task to optimize resources
of today’s complex systems. It is also challenging, as CPSs often mix discrete control,
continuous state space, time and stochasticity, between others. A well-studied model of CPSs
is Continuous-Time Markov Decision Processes (CTMDPs). On the theoretical side, optimal
controllers exist in the timed-bounded horizon setting [3, 16, 8], with infinite horizon [6, 12],
or with discounted infinite horizon [7]. Yet, building such optimal controller might not be as
simple, even in the time bounded case [15]. On the practical side, there are many algorithms
to produce ε-optimal controllers [16, 8]. CTMDPs are fully continuous models, expanded
in the previous decade by Decision Stochastic Timed Automata (DSTA, see [5, 4]), able
to express hard real-time constraints (e.g. timeouts, deadlines) using real-valued clocks
and guards on transitions stemming from the Timed Automata [1] and Stochastic TAs [2]
formalisms. In terms of DSTAs, CTMDPs are DSTAs with a single clock reset on all
transitions and no guards.
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13:2 Reinforcement Planning for ε-Optimal Policies in Dense Time

Theoretically, this ability to model hard constraints is very challenging as it produces
discontinuities. It breaks the proof for the existence of optimal controller for CTMDPs and
to produce ε-optimal policies in practice (except in the special case of value 1 [4]). In [5],
an existential theorem for optimal policies for timed bounded horizons in DSTA has been
proved in a non-constructive manner. However, besides the fact that they can be chosen
positional, little is known on the kind of policies necessary to achieve optimality.

In this paper, we develop a Reinforcement Planning (RP) framework [18] to prove
(Theorem 7) the existence of optimal positional policies for DSTA in general for unbounded
horizon equipped with a discount. This is the best possible result, as optimal policies do not
exist in general for unbounded horizon without discount [5].

Our main results concern ε-approximations: we prove that for one-clock DSTAs, which
are already more powerful than CTMDPs (the unique clock needs not be reset at every
transition) and allows to model discontinuous hard constraints such as timeouts, polytope
policies (defined hereafter) suffices. A polytope policy partitions [0, ∞) (value of the clock)
with a finite number of intervals and plays one action on each interval. Technically, we
develop a symbolic value iteration algorithm, creating polytopes only when necessary using
symbolic functional analysis (Lemma 18); and then use numerical analysis to effectively
compute approximations of these polytopes (Lemma 20). Last, we show that this is the
furthest this method can go, as in the presence of 2 clocks or more, the optimal policy after
n iterations is not a polytope policy (Theorem 9). A long version is available [13].

Related Work. Reinforcement Planning [18, 10] provides foundations to reason about
observations for completely specified models, that ground Reinforcement Learning (e.g.
Monte-Carlo method) which tackle un- or semi-specified systems. RP provides implementable
algorithms for fully specified models, which is also the case of our methodology, although the
implementation would require a heavy use of both symbolic functional as well as numerical
analysis tools which are very technical and tedious to implement. RP has first been theorized
for discrete models with finite state space (MDPs) [18]. Some version exist for a totally
continuous world (continuous state space, continuous action, continuous behavior) [10]. Some
RP frameworks have been developed for some specific model with discrete actions and
continuous state space: CTMDPs [7], ODEs [19], but without any discontinuous behaviors
such as deadline or timeouts. We did not find any RP methodology which can be applied to
a setting mixing continuous state space, discrete action set and non-continuous behaviors
(timeouts, deadlines). The closest related work is [9], where the authors design an effective
algorithm to produce ε-optimal policies. The main differences are that the method is very
different, discretizing time in many modes of ϵ-size (depending on the ε-precision desired),
whereas we compute a minimal number of (larger) modes using symbolic function analysis;
and the model considered is different, namely Markov Timed Automata (MTA). Compared
with DSTA, MTA cannot model urgency: time can always elapse, and all distributions are
exponential, whereas DSTA can enforce leaving a state before some time-out using uniform
distributions. Further, uniform distributions are harder to handle than exponential ones.
It is thus unclear how to lift similar time-discretization bounds for DSTA. We numerically
evaluate on a DSTA the efficiency of our technique in Section 5.3 and compare with the
complexity of time-discretization for a MTA of similar size.

2 Decision Stochastic Timed Automata

We start by defining the model of CPS we are considering in the paper, namely Decision
Stochastic Timed Automata (DSTA for short), extending CTMDPs with hard constraints.
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2.1 Notations
We fix finite sets C of clocks, and V of valuations over C, i.e. the set of all maps of C → R≥0
(clocks always have non-negative values). Given a valuation v ∈ V , we define two operations:
Time elapse v + δ with δ ∈ R≥0 is a valuation such that for all x ∈ C (v + δ)(x) = v(x) + δ ;
Reset C′ ⊆ C v[C′←0] is the valuation x 7→ 0 if x ∈ C′ and x 7→ v(x) otherwise.
We will sometimes consider a valuation v as a vector in R|C|≥0.

We denote G the set of guards, i.e. of constraints of the form
∧

1≤i≤|C|(xi ∈ Ii) and I the
set of invariants, i.e. guards featuring intervals with no lower bound. The set of constraints
over a set of clocks C is the set of all constraints of the form (

∑
1≤i≤|C| ai × xi) ▷◁ q with

ai ∈ Q, xi ∈ C, Ii an interval of Q, ▷◁∈ {<, ≤, =, ≥, >} and q ∈ Q. A polytope z ∈ Z is a finite
set of constraints over C. Let z ∈ Z and v ∈ V. We write v |= z if and only if v satisfies all
constraints in z. A polytope z defines a subset V(z) of R|C| containing the valuations v such
that v |= z. We define z[C′←0] as the polytope such that V(z[C′←0]) = {v[C′←0] | v ∈ V(z)}.

For a function P from some set to booleans we note 1P : y 7→ 1 iff P (y) and otherwise 0.
We write D(Y ) for the set of all probabilities distributions over a set Y .

2.2 Decision Stochastic Timed Automata
We consider DSTAs [5, 4], transition systems defining probabilities on sets of runs by assigning
probability distributions to delays, up to a policy dictating the transitions taken.

▶ Definition 1. A DSTA over clocks C and actions A is a tuple A = (L, E, ℓ0, I, µ) with
L a set of control state and ℓ0 ∈ L is the initial location,
E a set of transitions of the form (ℓ1, a, g, r, ℓ2) ∈ L × A × G × 2C × L, where g is the
guard of the transition and r is the finite set of clocks to reset when taking the transition,
I : L → I defines the invariants the clock values need to satisfy to stay in a control state,
µ = (µ(ℓ,v))(ℓ,v)∈L×V (X) defines probability distributions over delays for each control state
and clock valuation. For I(ℓ, v) = {δ ∈ R+|v + δ |= I(ℓ)}, it is of one of the following type:

if I(ℓ, v) is the singleton {0}, then µ is the Dirac distribution µ(0) = 1,
otherwise, if I(ℓ, v) is bounded, then µ is the uniform distribution over I(ℓ, v),
otherwise, I(ℓ, v) = [0, ∞) and µ is an exponential distribution µ(δ) = e−αℓδ for some
parameter αℓ ∈ R>0 independent over the valuation v.

Intuitively, a move in a DSTA A from a configuration (ℓ, v) ∈ L × V is done in two steps:
first, a delay δ is randomly chosen according to the distribution µ(ℓ,v), and then the policy
chooses a transition e = (ℓ, a, g, r, ℓ′) enabled from (ℓ, v + δ), reaching (ℓ′, (v + δ)[r←0]).

Formally, we define a partial run of a DSTA as a sequence of transitions and delays
ρ = (ei, δi)1≤i≤n starting from a configuration (ℓ1, v1) such that a corresponding sequence of
configurations can be defined: ρ =

(
(ℓi, vi)

ei−→ (ℓi+1, vi[ri←0])
δi−→ (ℓi+1, vi[ri←0] + δi)

)
1≤i≤n

(notably, the transitions ei are enabled in (ℓi, vi)). A run is a partial run starting in the
initial configuration (ℓ0, 0). We note Runs(A) (resp. PRuns(A, (ℓ, v))) the set of runs (resp.
partial runs) of a DSTA A (resp. starting from a configuration (ℓ, v)).

To start with a random passing of time, we can add a dummy state init with no incoming
transition. Every action from init leads to ℓ0, resetting all clocks, so that any random delay
can be taken in init. We will not depict such a state init in the different figures.

▶ Example 2. Figure 1 depicts DSTA A. In A, the user can play b in ℓ0 to roll for a new
clock value. When they play a, they are sent to ℓ1. Depending on the delay randomly chosen
in ℓ1, the control states either goes back to ℓ0 (x > 1) and resets the clock x, or it moves to

FSTTCS 2023
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ℓ0 ℓ1 ℓ2

ℓ4

ℓ3

x < 1 x < 2 x < 2

b, x < 1
x := 0

a, 0 < x < 1

a, 1 < x < 2
x := 0

a, 0 < x < 1 a, 0 < x < 1

a, 1 ≤ x < 2

Figure 1 A DSTA with one clock x with initial state ℓ0. The goal is to reach ℓ4.

ℓ2 (x < 1) from which another delay is randomly drawn and added to x: if this delay makes
x > 1, then the run goes to winning state, else it goes to a losing state. Intuitively, playing a

from ℓ0 with x very close to 1 is optimal, as then the chance to get stuck in the losing state
is very small (the sum of the delays from ℓ1 and ℓ2 needs to be smaller than 1 − x).

To discuss the semantics of DSTAs, we have to define the probabilities some behaviors
have to appear. As (almost) every run has a null probability to appear, we discuss at the
level of (partial) paths, i.e. sequences of transitions. A path π = (ei)1≤i≤n represents the set
of runs ρ such that there exist delays (δi)1≤i≤n with a run ρ = (ei, δi)1≤i≤n. We say that a
run ρ models a path π ∈ E∗ when their sequences of transitions match. A partial path is
said feasible when it has a model. We call path a partial path that is modeled by a (initial)
run. For paths, we will only consider (initial) runs as models. We write PPaths(A) (resp.
Paths(A)) for the set of partial paths (resp. paths) of an automaton A.

2.3 Rewards and policies

We consider a discounted average reward model as the objective function (as usual in
Reinforcement Planning), by contrast with winning state and infinite horizon (reward= 1 if
winning state ever reached, 0 otherwise) or finite horizon (reward = 1 if winning state reached
before the time horizon, 0 otherwise). More precisely, each transition is associated with a
reward, and we consider the discounted sum of all rewards as our objective function, with
immediate rewards of greater interest than later ones. Discount allows to tackle unbounded
runs, while optimal policies do not exist for unbounded horizons without discount [5].

▶ Definition 3. Consider a DSTA A = (L, E, ℓ0, I, µ). A reward function is a function
R : E → N associating a reward to each transition. Given discount 0 < γ < 1, the discounted
reward of a run ρ = (ei, vi)i or of a path π = (ei)i is R(ρ) = R(π) =

∑
i γi−1R(ei).

The rewards associated with Figure 1 are 0 on every transition except on from ℓ2 to ℓ4,
where the reward is 1. Hence a path reaching ℓ4 in i steps will get discounted reward γi.

The decisions made by the agent are formalized as policies. Policies depend on the type
of input they can use to take a decision: generic policies can use any information about the
history of the run to make stochastic choices, while more restrictive pure positional policies
can only use the current configuration and decide on a given transition deterministically.

▶ Definition 4. A policy σ on a DSTA A = (L, E, ℓ0, I, µ) is a function σ : Runs(A) → D(E).
A pure positional policy is a policy σ such that for all pairs of runs ρ, ρ′ ending in the same
configuration (ℓ, v) ∈ L × V, we have σ(ρ) = σ(ρ′) is a Dirac distribution in one action. We
can thus represent any pure positional policy as a function σ : (L × V) → E.
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Given a policy σ and a history ρ ∈ Runs(A) ending in (ℓ, v), we can define the probability
Pσ(π | ρ) for the behavior of the DSTA to model the path π = (ei)1≤i≤n after ρ as follows:

Pσ(π | ρ) = σ(ρ)(e1)
ˆ

δ∈I(ℓ1,v[r1←0])

Pσ((ei)2≤i≤n | ρ · (e1, δ))dµ(ℓ1,v[r1←0])

with ℓ1 the target location of e1 and r1 the set of clocks it resets. Given a reward function
R this can be used to assign a value to a policy.

▶ Definition 5. Fix a reward function R on a DSTA A with discount γ and an integer
n ∈ N. The value of a policy σ after a history ρ ∈ Runs(A) for n steps is

Valnσ(ρ) =
∑

π=(ei)1≤i≤n∈En

Pσ(π | ρ)R(π) .

The value of a policy for history ρ is Valσ(ρ) = limn→∞Valnσ(ρ). We write Val∗(ρ) =
supσ Valσ(ρ) for the optimal value. The value Val(∗)(σ)(A) = Val(∗)(σ)(λ), denoted Val(∗)(σ), is the
value associated with the empty run. A policy σ∗ is said optimal when Val∗ = Valσ∗ .

Rewards and values are bounded with known bounds. We write MaxReward (resp.
MaxValue) for the supremal reward (resp. value). Similarly, we adopt the notation Valσ(ρ, e)
(resp. Val∗(ρ, e)) to express the value of first playing e and then following σ (resp. having an
optimal value). Finally, for (pure) positional policy, we replace ρ by a configuration (ℓ, v)
(e.g. Valσ(ℓ, v)). We say that a policy σ is ε-optimal whenever Valσ(A) ≥ Val∗(A) − ε.

In general, one cannot represent finitely a measurable policy, nor even a pure positional
policy even for a DSTA with a unique clock. We now define a class of policies that can be
finitely described, called polytopes policies [5]. Given a control state ℓ, it partitions V with a
finite number of polytopes and assigns a unique action to each polytope.

▶ Definition 6. Let A be a DSTA. A pure positional policy σ is a polytope policy if for
each location ℓ of A there exists a finite set of polytopes Z1, . . . , Zn that partition V such that
∀1 ≤ i ≤ n, ∀v, v′ ∈ Zi, σ(ℓ, v) = σ(ℓ, v′).

3 Main Results

Our first contribution is to show, by adapting the RP framework to DSTA (see Section 4,
which serves as proof of Theorem 7), that pure positional optimal policies exist:

▶ Theorem 7. Let A be a DSTA. Then there exists a pure positional policy σ∗ such that for
every policy σ and every run ρ, Valσ∗(ρ) ≥ Valσ(ρ).

Notice that discounted infinite horizon is the most generic reward scheme possible enjoying
the existence of optimal policies, as it has been shown in [5] that optimal policies do not
exist in general for undiscounted infinite horizon. This matches the existence of optimal
policies for finite horizon properties of [5], with a vastly different proof technique.

Concerning ε-optimal policies, we show that the class of polytope policies, which are
finitely describable pure positional policies, are sufficient for DSTA with a unique clock
C = {x}. The main difficulty is that there are uncountably many configurations, and
from each a (pure positional) policy needs to provide which action to play. We do so by
developing a symbolic value iteration algorithm and prove in Lemma 18 that the policies
generated are polytope policies, using symbolic functional analysis. Even harder is to actually
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13:6 Reinforcement Planning for ε-Optimal Policies in Dense Time

compute effectively a ε-approximation from the uncountably many configurations, and not
only dealing with existence: Using numerical functional analysis, we explain how to compute
an approximation of the finitely many positions of the changes of sign of the value function,
without approximating the value function itself. This is our second and main contribution:

▶ Theorem 8. Let A be a DSTA with a unique clock and ε > 0. Then there exists an
effectively constructible positional polytope policy σε that is ε-optimal.

Section 5 serves as proof of Theorem 8: Lemma 18 shows that there exist an optimal
polytope policy σn for n steps of value iteration. This is complex as we do not know how to
provide a close-form solution for the value function itself, and we conjecture that it is a hard
problem. Eventually, after n iterations, σn will be ε

2 -optimal. Using numerical analysis, we
show in Lemma 20 in Section 5 how to compute effectively a polytope policy σ whose value
is at most ε

2 away from the value of σn, providing us with a polytope policy that is ε-optimal.
This is in stark contrast with the non-constructive proof of [5], which needs uncountable
time to produce ε-optimal policies.

According to Lemma 18, polytope policies are optimal for DSTA with 1 clock and without
loops, as the value is met after a finite number of steps of value iteration. Our third
contribution is that polytope policies are not optimal with 2 clocks and without loops.

▶ Theorem 9. There is a DSTA A with 2 clocks and without loops such that for all polytope
policies σ, there exists a policy σ′ with ValR,γ(A, σ) < ValR,γ(A, σ′).

The proof can be found in Section 5.7. It is inspired by [5], where it is shown polytope
policies are not optimal for finite horizon properties, even for DSTA with a unique clock. We
use the second clock to simulate the bound on the time horizon. Theorem 8 shows that for
one clock, the setting of discounted infinite horizon has much more desirable properties than
the one of bounded time. Notice that polytope policies could still be ε-optimal in general.

4 Bellman equations in dense time

We extend Reinforcement Planning [18] to DSTA models. We first focus on the introduction
of Bellman Equations for this continuous setting. The Bellman Equations are the theoretical
basis of RP, as they allow to incrementally compute or approximate the (optimal) values.

4.1 General policies
We first reason on general policies in order to prove the optimality of the pure positional
policies. Once their optimality is proved, the discussion is restricted to this simpler class.
We first define the Bellman Equations in their most general form for DSTA.

▶ Proposition 10. Given a policy σ and an history ρ ending in configuration (ℓ, v), Valσ(ρ)
is the only bounded solution of the Bellman Equation in dense time:

Valσ(ρ) =
∑

e=(ℓ,a,g,r,ℓ′)∈E

σ(ρ)(e) ×
(

R(e) + γ ×
ˆ

δ∈I(ℓ′,v[r←0])

Valσ(ρ · (e, δ))dµ(ℓ′,v[r←0])

)
.

In a similar fashion, Valσ(ρ, e) for e = (ℓ, a, g, r, ℓ′) is the unique solution of:

Valσ(ρ, e) = R(e) + γ ×
ˆ

δ∈I(ℓ′,v[r←0])

∑
e′=(ℓ′,a,g,r,ℓ′′)∈E

σ(ρ)(e′) × Valσ(ρ · (e, δ), e′)dµ(ℓ′′,v[r←0]).
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Proof sketch. We prove that the value is a solution by using the definition of Val as the
limit of Valn and unfolding it (taking the first action out of the limit). The uniqueness of the
bounded solution is proved by comparing two potentially different one: F (ρ) − F ′(ρ). Using
the equation allows to reduce their difference step by step as the first reward does not depend
on F / F ′. After n steps, the difference is bounded by γn times a probability distribution of
differences. As the functions are bounded, taking the limit proves the uniqueness. ◀

From Bellman’s equations, the following relations can be inferred:

▶ Corollary 11. Given a policy σ and a run ρ ending in (ℓ, v):

Valσ(ρ) =
∑
e∈E

σ(ρ)(e).Valσ(ρ, e) and Valσ(ρ, e) = R(e)+γ

ˆ

δ∈I(ℓ′,v[r←0])

Valσ(ρ(e, δ))dµ(l′,v[r←0])

with r the reset of e and l′ its target.

For any policy, we can construct a pure positional policy at least as efficient:

▶ Proposition 12. For any policy σ, there exists a pure positional policy σ′ such that
Valσ′ ≥ Valσ. In particular one such policy can be defined from σ in the following way:
consider a history ρ ending in configuration (ℓ, v), then

σ′(ℓ, v) = arg max
e∈E

sup
ρ′ ending in (ℓ,v)

R(e) + γ

ˆ

δ∈I(l′,v[r←0])

Valσ(ρ′ · (e, δ))dµ(ℓ,v[r←0])

 .

Proof sketch. Using Bellman Equation on Valσ allows to see that it is lower than what is
obtained by playing optimally at the next step (on all executions) and then following σ.
Applying the same reasoning n times allows to show that it is lower than Valnσ′ plus a bounded
term depending of Valσ discounted by γn. Taking the limit then allows to conclude. ◀

4.2 Positional policies
As we now know from Proposition 12 that positional policies are as efficient as general
policies, the rest of this paper mentions only pure positional policies. We will use the Bellman
Equation in their restricted form for pure positional policies, provided now:

Valσ(ℓ, v) = R(σ(ℓ, v)) + γ

ˆ

δ∈I(ℓ′,v[r←0])

Valσ(ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0])

with ℓ′ the target location of σ(ℓ, v).

Valσ(ℓ, v, e) = R(e) + γ

ˆ

δ∈I(ℓ′,v[r←0])

Valσ(ℓ′, v[r←0] + δ, σ(ℓ′, v[r←0] + δ))dµ(ℓ′,v[r←0])

with e(l, x, a) = (l, a, g, r, l′). The Bellman Equations rely on the integral of the value
on the interval of possible delays. We call this the interval value function, and write
IValσ(ℓ, v) =

´
δ∈I(ℓ′,v) Valσ(ℓ′, v + δ)dµ(ℓ′,v) . We have Valσ = R(σ(ℓ, v)) + γ.IValσ(ℓ′, v[r←0]).

We can show that if locally deviating from a value function according to a policy always
gives a better result, then globally changing to the new policy enhances the expected return.

FSTTCS 2023
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▶ Proposition 13. Consider a function F such that for all configurations (ℓ, v) F (ℓ, v, e) =
R(e) + γ

´
δ∈I(ℓ′,v[r←0])

F (ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0]) with ℓ′ the target of e. For a policy σ, if
for all configurations (ℓ, v), F (ℓ, v, σ(ℓ, v)) ≥ F (ℓ, v) then Valσ ≥ F . Furthermore Valσ > F

if and only if there exists a configuration where the inequality is strict.

Proof sketch. The result is obtained as previously by unfolding the equation for n step
before using the discount and the boundedness of functions to conclude. ◀

Corollary 16 apply this to obtain a greedy improvement from the current policy. We now
state the Bellman optimality equations in dense time, characterizing the optimal values.

▶ Proposition 14. Val∗ is the only bounded solution of the Bellman Optimality Equation:

Val∗(ℓ, v) = max
e∈E

R(e) + γ

ˆ

δ∈I(ℓ′,v[r←0])

Val∗(ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0])


with r the resets of e and ℓ′ its target location. Similarly:

Val∗(ℓ, v, e) = R(e) + γ

ˆ

δ∈I(ℓ′,v[r←0])

max
e∈E

Val∗(ℓ, v[r←0] + δ)dµ(ℓ′,v[r←0]) .

Proof sketch. The proof goes as for Bellman Equations: unfolding the definition of Val∗ on
one step allows to prove that it is a solution, while uniqueness is showed by comparing two
solutions and using γ to limit their difference to 0 in the limit. ◀

We will again write IVal∗(ℓ, val) =
´

δ∈I(ℓ,v) Val∗(ℓ′, v + δ)dµ(ℓ′,v). As for values of policies,
we use it to deduce relations between optimal values for configurations and transitions.

▶ Corollary 15. For any configuration (ℓ, v) and transition e ∈ E we have the following
equalities: Val∗(ℓ, v) = maxe∈E Val∗(ℓ, v, e) and Val∗(ℓ, v, e) = R(e) + IVal∗(ℓ′, v[r←0])

Using these equations and Proposition 13, we obtain two important results: the policy
improvement theory works as for MDPs (it has no local minima) and the pure positional
policies are optimal.

▶ Corollary 16. Given a policy σ, we can deduce a positional pure policy σ′ such that
∀(ℓ, v) ∈ L × V, σ′(ℓ, v) = arg maxe∈E

(
R(e) + γ.IValσ(ℓ′, v[r←0])

)
with r the reset of e and

l′ its target. Then Valσ′ ≥ Valσ. Furthermore, if Valσ′ = Valσ then σ is optimal.

We now restate Theorem 7 in this context and prove it:

▶ Theorem 17. There exists a pure positional policy σ∗ such that Valσ∗ = Val∗.

Proof sketch. For each configuration, we consider the action which is associated with the
maximal expected reward when being played from this configuration (chosen arbitrarily
from the actions with the same expected maximal reward). We call such an action an
optimal action. We consider the positional policy which plays these optimal actions from each
configuration. Using Proposition 13, we can show that such a policy is indeed optimal. ◀

Notice that the above proofs crucially rely on the fact that the discount γ < 1. Indeed,
for γ = 1 (infinite horizon reachability without discount), playing positionally the optimal
action may lead to very bad outcome. E.g., in Figure 1, the optimal action from (ℓ0, x < 1)
is to play action b, looping forever in location ℓ0, as the expected reward associated with
playing b is higher (the supremal value is 1) than the reward from playing a which has some
risk associated with it (of value 1 − ε). When there is a discount γ < 1, playing a becomes
optimal from (ℓ0, x < 1) for x close to 1, as waiting for a better value of x is not worth it.
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5 Computing ε-optimal Policies

5.1 Mode Policies for DSTA with 1 clock
We now restrict ourselves to DSTA with a single clock x. 1-clock polytopes are intervals
(called modes), i.e. they can be represented by two bounds in R≥0 ∪ {+∞}. We call
mode policies such polytope policies. A mode policy σ of DSTA A with control state L is
represented in the following finite way: σ = (Mℓ

σ, σℓ)ℓ∈L with:
Mℓ

σ is a partition of R≥0 in a finite set of modes M1 . . . Mk ∈ Mℓ
σ (the modes of ℓ),

For all ℓ ∈ L, we have σℓ : Mℓ
σ → E gives the action associated with each mode of ℓ.

We will represent the bounds of the interval with rational numbers in Q, wlog as we only
need ε-approximations. Mode-policies allow for a finite number of points of discontinuity.

Closeness or openness of intervals is not a concern as there is probability 0 to reach the
exact boundary between two modes in a control state. What happens at b for the maximal
mode [a, b] of a control state might be important though (e.g. with b = a caused by an
invariant), so we have one special mode at the end of the interval for [b, b] whenever b < +∞.

5.2 Symbolic Value Iteration for mode policies
We proceed in two steps: First, we provide our symbolic value iteration Algorithm 1 to
define the exact mode policy σ∗i obtained after i steps of the value iteration. Proposition 19
shows that the value Val∗i of σ∗i converges towards the optimal value, and given an ε > 0,
it provides an effectively computable i such that Val∗i > Val∗ − ε

2 . Lemma 18 proves that
σ∗i has a finite number of modes, for all i ∈ N. We never compute the value function itself
(we do not know how to represent it). Further, modes, e.g. the exact value of the (possibly
non-rational) boundaries, cannot be computed perfectly.

The second step handles these issues, by computing effectively a mode policy σ1 approx-
imating σ∗1 , such that its value is at least Val1 > Val∗1 − ε1. We set ε1 sufficiently small such
that inductively, we obtain a policy σi with value Vali > Val∗i − ε

2 . Overall, Vali > Val∗ − ε.
To ease the presentation, we assume that only two actions {α, β} are available. It is easy

to extend to more actions by comparing actions pairwise. We focus on modes where both
α, β are allowed, as the policy is trivial if only one action is allowed. On these modes, Val is
continuous. Recall that for I(ℓ) = [a, b], we denote IVal(ℓ, x) =

´ b

x
Val(ℓ, t)dµ(ℓ, t).

Step 1: Symbolic Function Analysis to define the exact mode policy

The structure of Algorithm 1 is as follows: from initial value Val0 = 0, we inductively define
the next action value using Bellman Optimality (line 7). Then, the modes of this new value
function are defined (line 9) and for each mode the best action is chosen (line 13). Finally
the new value function is defined for each mode (line 14). Notice that we only need to
determine the boundaries where the sign of Vali(ℓ, x, α) − Vali(ℓ, x, β) changes, we do not
need to compute or represent the value function (symbolic nature). The algorithm relies on
the crucial fact that the number of such boundaries at each step is finite (Lemma 18).

▶ Lemma 18. Let ℓ ∈ L a control state. For all i ∈ N, defining f : x 7→ Vali(ℓ, x, α) −
Vali(ℓ, x, β), there is a m ∈ N such that for all j ≤ m, there exists a sequence (f̃ (j))m

j=0 of
derivable functions, called the pseudo-derivatives of f , with:

the sign of f̃ (0) and of f coincide in all points of M ,
for 1 ≤ j ≤ m, the sign of f̃ (j) and of df̃(j−1)

dt coincide in all points of M , and
function f̃ (m) has a constant sign over M .

In particular, functions f, f̃ (0) change sign at most m times.
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Algorithm 1 Symbolic Value Iteration Algorithm to define the exact mode policy σ∗i .

1 Init: i := 0 and ∀ℓ ∈ L, x ∈ R≥0, ι ∈ {α, β}, let Val∗0(ℓ, x) := Val∗0(ℓ, x, ι) = 0;
2 σ∗0 has only one mode M = [0, ∞) for each ℓ ∈ L playing σ∗0

ℓ(M) = α;
3 repeat
4 for each location ℓ ∈ L do
5 for each mode M ∈ Mℓ

σi
do

6 for each action ι ∈ {α, β}, let ℓ′ the destination of the transition ι and
r = 1 if the clock is reset, r = 0 otherwise do

7 Define Vali+1(ℓ, x, ι) := R(ι) + γIVal∗i (ℓ′, (1 − r)x) for any x;
8 end
9 Compute a minimal finite set Mℓ

M of modes such that on each mode
Vali+1(ℓ, v, α) − Vali+1(ℓ, v, β) does not change sign;

10 end
11 Set Mℓ

i+1 :=
⋃

M∈Mℓ
σi

Mℓ
M

12 end
13 Assign σ∗i+1 := (Mℓ

i+1, σℓ
i+1)ℓ∈L where for each control state ℓ ∈ L and mode

M ∈ Mi+1, the policy is σ∗i+1
ℓ(M) = α if Vali+1(ℓ, x, α) − Vali+1(ℓ, x, β) ≥ 0

for x ∈ M , and σ∗i+1
ℓ(M) = β otherwise;

14 Define Val∗i+1(ℓ, v) := Vali+1(ℓ, v, σℓ
i+1(M)) for v ∈ M ;

15 Let i := i + 1;
16 end

Line 13 computes the sign of Vali+1(ℓ, x, α) − Vali+1(ℓ, x, β) = f(x). As f changes sign
at most m times (Lemma 18), we have at most m + 1 modes. The proof of Lemma 18
can be found in Section 5.4 and relies on the symbolic derivation of f̃ (j) depending on the
probability distributions dµ(ℓ, t). We can now prove that Algorithm 1 produces an ε-policy:

▶ Proposition 19. For all ε > 0, Algorithm 1 produces a mode-policy σ∗ε that is ε-optimal.
Further, one can effectively compute a step i after which (Val∗ − ε) < Valσ∗

i
≤ Val∗.

The proof of Proposition 19 can be found in Section 5.5. It is done in three steps:
first show that V al∗i converges, towards a value that is solution of the Bellman Optimality
Equation. The third part of the proof provides the number of steps i to ensure a given ε.

To prove Theorem 8, we make symbolic Algorithm 1 effective, computing a mode policy σ∗i
approximating σ∗i . In particular, we effectively approximate constants coming from integral
computations in (f̃ (j))m

j=0, then approximate their roots, to obtain approximated roots of f ,
giving Q-boundaries arbitrarily close to the boundaries of modes of the symbolic σ∗i .

Step 2: Numerical Analysis to effectively compute an approximated mode policy σ∗
i

Line 13 of Algorithm 1 asks to find the change of sign (or equivalently the roots) for the
function f defined in Lemma 18. While the values of the roots may not be easily computable
symbolically, we show in the following Lemma that we can approximate them with arbitrarily
high precision using numerical analysis (e.g. using Ridder’s method [17]):

▶ Lemma 20. Let f and m be as defined in Lemma 18. Then for all ε0 > 0, one can compute
b0 ≤ a1 ≤ b1 ≤ · · · ≤ am such that for all j ≤ m, f does not change sign on [bj , aj+1), and
|f(t)| ≤ ϵ1 = 5ε0 MaxValue over all t ∈ [aj , bj ] and |bj − aj | ≤ ε0.
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ℓ0 ℓ1 ℓ2

x < 1 x < 2 x < 2

b, x < 1
x := 0

a, 0 < x < 1

a, 1 < x < 2
x := 0

a, 0 < x < 1 a, 0 < x < 1

a, 1 ≤ x < 2

+1

The proof of Lemma 20 can be found in [13]. It is crucial that the number of intervals m

does not depend upon the bounds ε0 to obtain an effectively computable mode policy. From
a value function Val, associated function f , and b0 ≤ a1 ≤ b1 ≤ · · · ≤ am from Lemma 20
using a small enough ε0 > 0, we define the approximated mode policy σ as follows:

Between (bi, bi+1), the policy σ plays α if the sign of f( bi+ai+1
2 ) is > 0. Indeed, between

(bi, ai+1), we know that playing α brings a higher Vali+1 than playing β. Between
(ai+1, bi+1), the difference is small so it does not matter much the choice α or β.
Otherwise, σ plays β.

We denote Val(ℓ, v) = R(σ(ℓ, v)) + γIVal(ℓ′, vr←0) the value function associated with σ,
for ℓ′ reached by playing σ resetting r. Let Val+1 be the value function we would obtain by
applying one iteration of Algorithm 1 from Val. As corollary of Lemma 20, we obtain:

▶ Corollary 21. |Val(ℓ, x) − Val+1(ℓ, x)| < ϵ1 = 5ε0 MaxValue.

We inductively compute Vali, σi from the previously computed Vali−1, σi−1.
The proof of Theorem 8, provided in Section 5.6, shows that we can limit the effect of those

successive approximations on the value of the resulting policy. We obtain Vali > Vali − ε
2 by

applying Corollary 21 repetitively for ε0 chosen small enough. We conclude by combining
this error for the i provided by Proposition 19, and using the fact that Val(σi) ≥ Vali.

5.3 Running example: methodology and numerical evaluation
We now roll out our procedure on an example, and compare with discretization [9].

Let us consider the DSTA A from Figure 1. For convenience, we copy the picture hereafter.
At initialization, there is a unique mode [0, ∞) in all control state, choosing action a.

After one step, only ℓ2 has a non-null value. The value of ℓ2 is Val1(ℓ2, x) = Val∗(ℓ2, x) = 1
if x > 1 and 0 if x < 1, as the only transition with non-null reward is the one from ℓ2

to . The value remains unchanged by later iterations. As there is no choice of action
(only a available), ℓ2 has a unique mode choosing a. It is not always possible to compute a
closed-form solution for the value, and often one needs to keep the integral expression.

After two steps, the value in ℓ1 is updated as Val1(ℓ2, x) > 0 for some x. The value is
Val2(ℓ1, x) = Val3(ℓ1, x) = 0 for x > 1 and γ

2−x

´
t∈[x,1) 1dt = γ 1−x

2−x for x < 1, where again
we can give a closed form solution. This will be updated at later steps (≥ 4) after ℓ0 gets a
non-zero value and transition from ℓ1 to ℓ0 can bring some contribution to the reward as
well. As there is no choice of action in ℓ1, there is a unique mode, choosing action a.

After three steps, the values of actions in ℓ0 are updated for the first time. We have
Val3(ℓ0, x, b) = 0 and Val3(ℓ0, x, a) = γ

2−x

´
t∈[x,1) Val2(ℓ1, t)dt = γ2

2−x

´
t∈[x,1)

1−t
2−t dt > 0. We

can notice that 1−t
2−t = 1 − 1

2−t . As
´

t∈[x,1)
1

2−t dt =
´

t∈(1,2−x]
1
t dt = log(2 − x), this gives

Val3(ℓ0, x, a) = γ2 1−x−log(2−x)
2−x . So there is a unique mode, [0, ∞) choosing action a.
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The fourth steps for ℓ0 is the first interesting case. To take its decision, value iteration
considers Val3(ℓ0, x) = γ2 1−x−log(2−x)

2−x and Val3(ℓ1, x) = γ 1−x
2−x . We have:

Val4(ℓ0, x, b) = γ3
ˆ

t∈[0,1)

1 − t − log(2 − t)
2 − t

dt; Val4(ℓ0, x, a) = γ2

1 − x

ˆ

t∈[x,1)

1 − t

2 − t
dt.

To know whether one needs to choose action a or b in ℓ0 at the 4th step of value iteration,
one has to study the sign of f = Val4(ℓ0, x, b) − Val4(ℓ0, x, a). When it is positive, the policy
should play b, and a otherwise. The value Val4(ℓ0, x, b) is a constant C1 not depending upon
x, whose value can be approximated to 0.0666γ3. We do not compute a closed form solution
for Val4(ℓ0, x, a) - this is not necessary and often not possible anyway.

We have f(x) = C1 − γ2

1−x

´
t∈[x,1)

1−t
2−t dt. We multiply f by (1 − x) which does not change

its sign (as x < 1), defining f̃ (0)(x) = f(x)(1 − x). We compute df̃(0)(x)
dx = γ2 1−x

2−x − C1,
getting rid of the integral. Multiplying by (2 − x), which is always positive, we define
f̃ (1)(x) = γ2(1 − x) − C1(2 − x). This is an affine function, which changes sign at most once,
and whose root can be easily decided, depending on the fix value of γ. The function f̃ (1)

cancels at the same root, hence f̃ (0), changes at most twice its sign, that is f(x) changes at
most twice its sign (3 modes maximum) at the same (at most 2) roots. Actually, for γ = 0.95,
it has only 1 root r in [0,1), around 0.49863, so 2 modes:

M ℓ0
4 :

0 r ≈ 0.49863 1
[ [ )

b a

We finish the example by explaining how modes are taken into account inductively:

Val5(ℓ0, x, b) = γ

ˆ

t∈(0,r)

V al4(ℓ0, t, b)dt + γ

ˆ

t∈(r,1)

V al4(ℓ0, t, a)dt,

while Val5(ℓ0, x, a) = Val4(ℓ0, x, a) as Val4(ℓ1, x, a) = 0 for x > 1. By definition,
Val5(ℓ0, x, a) does not depend upon x, it is a constant C2 larger than C1 = Val4(ℓ0, x, a) for
γ = 0.95, which gives still 2 modes for M ℓ0

5 with a switch at r5 > r. For all i, Vali(ℓ1, x, a)
is a constant for x > 1, while Vali(ℓ1, x, a) = V al2(ℓ1, x, a) for x < 1. Hence, all subsequent
value iteration for ℓ0 have two modes, playing b on (0, ri) and a on (ri, 1), with ri approaching
r∗ for the optimal strategy playing b on (0, r∗) and a on (r∗, 1).

Lemma 18 generalizes this process proving that there is only a finite number of sign
changes for f , while Lemma 20 shows that the bounds of the intervals of the different
roots/modes of f̃ (j) can be approximated arbitrarily close (using Ridder’s method [17]).

Evaluation on the running example and comparison with time-discretization

We now evaluate the different constants needed on the running example. Consider a standard
discount γ = 0.95. MaxReward= 1 gives (proposition 19) a number of value iterations of
i < 200 for a precision of ε = 10−5, and of i < 300 for ε = 10−7. For each iteration i, the
two constants Ci

1 = V ali(ℓ0, x, b) independent of the choice of x < 1 and Ci
2 = V ali(ℓ1, x, a)

independent of the choice of x > 1 are evaluated, i.e. 2 evaluations of function at one given
point x, so overall i, 400 or 600 evaluations of function at one point. Then, the roots root1

i

of f̃ (1) are computing using Ci
1, Ci

2, then the root of f̃ (0) in (0, root1
i ) if any, and the root

in (root1
i , 1) if any, using Ridder’s method. This yields 600, 900 call to Ridder’s altogether.
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Each call needs respectively log(2 · 105) < 13 and log(2 · 107) < 17 iterations to ensure
the ε = 1

210−5 and ε = 1
210−7 precision respectively. Each iteration of Ridder’s method

evaluates f(x) at one given point x to narrow down where the root is (which side of f(x) it
is). Applying Corollary 21, one obtains a precision of 10−4 with 8200 evaluations of functions
at one point, and 10−6 after 15900 evaluations of function at one point respectively.

Consider the time-discretization method of [9]. It cannot handle uniform distribution
as used in ℓ0, ℓ1, but for the sake of comparison, consider a 3 states system using only
exponential distributions, and a single clock. Quoting the long technical report p22 http:
//www.cs.ox.ac.uk/people/taolue.chen/pub-papers/cdc_full.pdf of [9], the authors
need to solve a >60000 states MDP for 10−4 precision, and > 1 million states MDP for 10−6

precision. Using Linear Programming, this would amount to the same number of variables,
with a process far from linear. Using value iteration would be possible, but incur another
error which would need to be taken into account, amounting to a similar 200 iterations times
60000 states for the 10−4 precision. An advantage is that the time-discretization also holds
for more than one clock, although the complexity would be prohibitive, with an MDP with
1.2 billion states already for 2 clocks and the precision 10−4, making it a moot advantage, on
top of the bounds not applying for DSTAs.

5.4 Proof of Lemma 18

Notice that if we could compute a closed-form solution of the value functions after n steps, it
would be easy to deduce the values of x where the sign of f(x) changes. The problem is that
we do not know closed-form solutions of integrals of more and more complicated functions.

Instead, we cleverly replace the integrals by a simpler functions f̃ (j) which changes sign
at the same value, derive, until we reach a polynomial where the lemma is trivially true, and
analyze the roots of function f̃ (j) by a backward induction. This does not work with ≥ 2
clocks as for functions of ≥ 2 variables, sign changes are not related with roots of derivatives.

We fix a location ℓ at iteration i. We present the proof in the case where neither playing
α nor β resets x (other cases are simpler) and all distributions on delays are uniform (which
is more complex than exponentials). Other cases can be found in [13]. For ι ∈ {α, β}, we
denote (Mj = (xι

j , xι
j+1))0≤j≤Jι the modes of σi in ℓι that can be reached from x. We have:

Vali+1(ℓ, x, ι) = R(ι) + γ
1

xι
Jι+1 − x

(ˆ
x≤t≤xι

1

Vali(ℓι, t, σℓι
i (M0))dt +

Jι∑
j=1

ˆ

xι
j
≤t≤xι

j+1

Vali(ℓι, t, σℓι
i (Mj))dt

)
.

Let xm = min(xα
0 , xβ

0 ). There exists constants Cι, C ′ι and C ′′ι such that:

Vali+1(ℓ, x, ι) = Cι + C ′ι
1

xι
Jι+1 − x

ˆ

x≤t<xm

Vali(ℓι, t, σℓι
i (M0))dt + C ′′ι

1
xι

Jι+1 − x
.

Lemma 18 only needs symbolic functional analysis (value of m and existence of functions
(f̃ (j))j≤m), so we do not need in Lemma 18 the actual value of Cι’s, only their existence.
Later, in Lemma 20, we will however need to approximate these constants. This is done
through numerical integration (Newton-Cotes and Generalized Gauss–Laguerre quadrature).
To study the sign of fi+1(x) = Vali+1(ℓ, x, α) − Vali+1(ℓ, x, β) we study the sign of f̃ (0) =
(xα

Jα+1 − x)(xβ
Jβ+1 − x)fi+1(x), which is the same. For C a constant, we write f̃ (0) as:
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f̃ (0)(x) = C(xα
Jα+1 − x)(xβ

Jβ+1 − x) + C ′α(xβ
Jβ+1 − x)

ˆ

x≤t≤xm

Vali(ℓα, t)dt + Cα(xβ
Jβ+1 − x)

+C ′β(xα
Jα+1 − x)

ˆ

x≤t≤xm

Vali(ℓβ , t)dt + Cβ(xα
Jα+1 − x).

We derive f̃ (0) once to obtain f̃ (1), then once more obtaining for some C1, C2, C3, C4, C5:

g(x) = C1+C2Vali(ℓa, x)+C3(xβ
Jβ+1−x)Val′i(ℓα, x)+C4Vali(ℓβ , x)+C5(xα

Jα+1−x)Val′i(ℓβ , x)

There is no more integral terms in g(2)(x). Function g(2)(x) is of the generic form:

Gi(x) = P (x) +
∑
k≤K

P α
k (x)Val(k)

i (ℓα, x) +
∑
k≤K

P β
k (x)Val(k)

i (ℓβ , x),

for some polynomials P, P α
0 , . . . , P α

K , P β
0 , . . . , P β

K Generalizing the method above, we can
show by induction over i ∈ N [13], that there exists a m′ ∈ N such that for all j ≤ m′, there
exists a sequence (g̃(j))m′

j=0 of derivable functions with:
the sign of g̃(0) and of Gi(x) coincide in all points of M ,
for 3 ≤ j ≤ m′, the sign of g̃(j) and of dg̃(j−1)

dt coincide in all points of M , and
function g̃(m′) has a constant sign over M .

Aplying this result, it suffices to choose m = m′+2 and f̃ (j) = g̃(j−2) for all 2 ≤ j ≤ m′+2.

5.5 Proof of Proposition 19
First, we define MaxReward = max(ℓ,ι)∈L×E(R(ι)), the maximal reward over all the trans-
itions, as well as MaxValue = MaxReward

1−γ an upper bound on values in all the states.
We now show that the value iteration process indeed converges towards the optimal value

Val∗(A). For this, we first demonstrate that (Vali)i∈N converges as it is non-decreasing and
upper bounded. Then we prove that the value it converges to is a (bounded) solution to
Bellman Optimality Equations, which allows us to stop the algorithm after a computable
number i of steps, with the guarantee that the policy is ε-optimal.

Proof.
Value Iteration converges. Recall that Val0(ℓ, v) = 0 for all ℓ, v, and that all rewards are
non negative. By an induction on i, we show that the Vali have an upper bound:

∀i ∈ N, ∀(ℓ, v) ∈ L × R≥0, Vali(ℓ, v) ≤ MaxReward
1 − γ

= MaxValue

Another induction on i shows that the vi are increasing: for all i ≥ 0, Vali+1 ≥ Vali.
Initialization: Val0 ≤ Val1 is trivial as Val0 = 0 and no reward is negative.
Now, assume ValJ+1 ≥ ValJ . Let (ℓ, v) ∈ L × R≥0.

ValJ+2(ℓ, v) = maxι∈ER(ι) + γ
´

δ∈I(ℓ′,v[r←0]) ValJ+1(ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0])

applying the induction hypothesis, we get
≥ maxι∈ER(ι) + γ

´
δ∈I(ℓ′,v[r←0]) ValJ (ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0])

= ValJ+1(ℓ, v)

Thus (Vali) is increasing with i, bounded, hence converges towards some Val∞.
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Val∞ is a solution to Bellman Optimality Equation. For all (ℓ, v) ∈ L × R≥0 and i:

Vali+1(ℓ, v) = maxι∈ΣR(ι) + γ

ˆ

δ∈I(ℓ′,v[r←0])

Vali(ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0])

At the limit, we obtain:

Val∞(ℓ, v) = limi→∞maxι∈ΣR(ι) + γ
´

δ∈I(ℓ′,v[r←0]) Vali(ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0])

= maxι∈ΣR(ι) + γ limi→∞
´

δ∈I(ℓ′,v[r←0]) Vali(ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0])

Val∞(ℓ, v) = maxι∈ΣR(ι) + γ
´

δ∈I(ℓ′,v[r←0]) Val∞(ℓ′, v[r←0] + δ)dµ(ℓ′,v[r←0])

Val∞ is indeed a bounded solution of the Bellman Optimality Equation. Under the
hypothesis that the optimal value Val∗ exists, it is the only bounded solution of the Bellman
Optimality Equation: we therefore have Val∞ = Val∗.

As the mode-policies produced by Value Iteration are greedy over the successive Vali
that converge toward Val∗, their values converge toward Val∗.

Expression of the approximation as a function of i. As stated, σ∗i plays optimally
according to Vali, thus Valσ∗

i
≥ Vali. Furthermore, by unraveling the expression of Vali up

to Val0 = 0 and comparing it to Val∞ (using the Bellman Optimality Equation), we obtain:
Val∞(ℓ, v) − Vali(ℓ, v) ≤ γi MaxValue. Given ε > 0, we set i = log(ε)−log(1−γ)+log(MaxReward)

log(γ) ,
to obtain Valσ∗

i
≥ Vali ≥ Val∞ − ε = Val∗ − ε. ◀

5.6 Proof of Theorem 8
Let ε > 0 be a small constant. Using Proposition 19 we know that we can compute i such
that Val∗i ≥ Val∗ − ε

2 . In particular, Val∗i (λ) ≥ Val∗(λ) − ε
2 (where λ is the empty run). We

choose approximation factor ε0 as follows for Corollary 21 such that Vali(λ) ≥ Val∗i (λ) − ε
2 .

We show by induction on j that Valj ≥ Val∗j −
∑j−1

k=0 γk × (5ε0 MaxValue) with ε0 as
defined in Lemma 20. For j = 0 we have Val0 = Val0. Inductive step: suppose the result for
a given j. Then, by Corollary 21 and Bellman Optimality Equation:

Valj+1(ℓ, v) ≥ max
ι

(
R(ι) + γ.IValj(loc′ι, v[rι←0])

)
− 5ε0 MaxValue

with rι the reset associated with ι in (ℓ, v + δ) and ℓ′ι the target location. Using the induction
hypothesis we then have

Valj+1(ℓ, v) ≥ max
ι

(
R(ι) + γ.IValj(loc′ι, v[rι←0])

)
− 5 MaxValue

(
γ ×

j−1∑
k=0

γkε0 − ε0

)
.

By definition of Valj+1 we then have our result which finished the proof by induction.
We thus fix ε

2 ≥
∑i−1

k=0 γk5ε0 MaxValue i.e. ε0 ≤ ε
10 MaxValue × (1−γ)

(1−γi) , which we can
effectively compute. This ends the proof of Theorem 8.

5.7 Proofs of Theorem 9 : Counter example with 2 clocks
To prove Theorem 9, we exhibit a simple DSTA with two clocks and without loops (Figure 2)
in which the optimal value can not be represented using polytopes.

The only choice is between e2 and e3 in ℓ1. The optimal values in ℓ4, ℓ5 and ℓ6 are
simply 0 and the optimal values in ℓ2 and ℓ3 can be correctly computed in one step as:
Val∗(ℓ2, (x, y)) = 1 if x > 1 and 0 otherwise and Val∗(ℓ3, (x, y)) = 2 if y ≤ 1 and 0 otherwise.

FSTTCS 2023
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ℓ0 ℓ1

ℓ2

ℓ3

ℓ5

ℓ4

ℓ6

y ≤ 1 y < 1

x ≤ 2

y ≤ 2

x := 0

e2

e3

x > 1
+1

y ≤ 1
+2

x ≤ 1

y > 1

Figure 2 A simple DSTA with two clocks without loops.

Thus the values of e2 and e3 are correctly computed in two steps as:

Val∗(ℓ1, (x, y), e2) = 1
2 − x

ˆ

δ∈]1−x,2−x]

1dt = 1
2 − x

Val∗(ℓ1, (x, y), e3) = 2
2 − y

ˆ

δ∈]0,1−y]

1dt = 2 × 1 − y

2 − y

The optimal value in ℓ1 is thus maximum of these two values. It comes that e2 is played when
1

2−x − 2 × 1−y
2−y > 0 i.e. 3y + 2x − 2xy − 2 > 0 which cannot be represented by a polytope.

6 Conclusion

Over the span of this paper, we defined a framework for Reinforcement Planning in dense
time with discontinuities, modelled by DSTAs. In the presence of a single clock, we developed
an algorithm that computes a ε-optimal policy over an uncountable number of configurations
in bounded time, represented in a finite way as a mode policy. Notice that we do not use a
closed-form solution for the value function itself: we believe such closed-form solutions cannot
be computed in general even for 1-clock DSTA, as some integrals do not have closed-form
solutions. Further, we did not rely on a discretization of time in ϵ-steps, in order to keep
the number of mode minimal which we showed to be efficient on our running example w.r.t.
time-discretization. This made the proofs particularly involved.

An interesting question is what happens if we use policy iteration instead of value iteration.
This technique considers the reward associated with a policy, and thus demands more complex
computations than value iteration which only considers bounded paths. We do not know
how to evaluate them as we do not have closed-form solution of the value function.

Last, we supposed that we knew all the parameters of our model (rewards, distributions
on delays) as it is the case in RP. In untimed settings, Reinforcement Learning developed
techniques to work on partially unknown models by exploring them while trying to limit
the necessary sample size. A interesting extension of this work would be to study a possible
adaptation of exploration algorithms in dense time, which however reveals to be very
challenging when dealing with Timed automata and its extensions [11, 14].
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