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Abstract
We introduce and initiate the study of a natural class of repeated two-player matrix games, called
Repeated-Until-Collision (RUC) games. In each round, both players simultaneously pick an action
from a common action set {1, 2, . . . , n}. Depending on their chosen actions, they derive payoffs given
by n × n matrices A and B, respectively. If their actions collide (i.e., they pick the same action),
the game ends, otherwise, it proceeds to the next round. Both players want to maximize their total
payoff until the game ends. RUC games can be interpreted as pursuit-evasion games or repeated
hide-and-seek games. They also generalize hand cricket, a popular game among children in India.

We show that under mild assumptions on the payoff matrices, every RUC game admits a Nash
equilibrium (NE). Moreover, we show the existence of a stationary NE, where each player chooses
their action according to a probability distribution over the action set that does not change across
rounds. Remarkably, we show that all NE are effectively the same as the stationary NE, thus showing
that RUC games admit an almost unique NE. Lastly, we also show how to compute (approximate)
NE for RUC games.
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1 Introduction

Two-player matrix games, or bimatrix games, are among the most well-studied classes of
games in non-cooperative game theory [27]. A bimatrix game involves two players with a
finite set of actions {1, 2, . . . , n}, and can be represented by two n × n payoff matrices A and
B for the two players. A play of the game can be thought of as one player choosing a row i

and the other player choosing a column j simultaneously. The “row” player gets a payoff
of Ai,j and the “column” player gets a payoff of Bi,j . To avoid being predictable, players
can choose their actions according to a randomized or mixed strategy which is a probability
distribution over their action set. Naturally, each player is interested in maximizing their
(expected) payoff.

Arguably the most popular solution concept in game theory is that of Nash equilibrium [24].
A Nash equilibrium (NE) for a bimatrix game is a pair of mixed strategies where no player
has any incentive to unilaterally deviate and change her strategy. In a celebrated result,
Nash showed that each bimatrix game admits a Nash equilibrium. Given that two-player
games are ubiquitous and have widespread applications in networks and communications [8],
financial markets [1], robotics [18], etc., the field of algorithmic game theory has extensively
studied the existence and computation of NE in bimatrix games and their generalizations.
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18:2 Two-Player Matrix Games Repeated Until Collision

A repeated two-player game is one such generalization, which involves repetitions of a
base bimatrix game [20, 33, 6]. In a repeated game, a player can choose their moves based on
the moves played by the players in the previous rounds, while recognizing that their current
move will impact the choice of moves of their opponent in the future, leading to added
complexity. While finitely repeated games are well-understood using backward-induction [6],
the equilibria of infinitely repeated games can differ from that of the base game [20].

In this paper, we introduce and initiate the study of a natural class of repeated bimatrix
games, called Repeated-Until-Collision (RUC) games. For n × n non-negative matrices A

and B, an RUC game (A, B) has two players, called max player and min player, where A

is called the max player’s score matrix and B is called the min player’s cost matrix. The
game consists of multiple rounds. Suppose the max player and min player pick actions i and
j, respectively, in a round. Then the max player earns a score of Ai,j and the min player
incurs a cost of Bi,j . If i = j, the game ends (we call this event a collision). Otherwise, the
game proceeds to the next round. We assume that the max player and min player may use
randomized strategies. The max player wants to maximize her expected total score and the
min player wants to minimize her expected total cost. Below we discuss a few applications
of RUC games, thus underscoring their importance.

Applications. RUC games can be interpreted as variants of pursuit-evasion games [17, 7].
As a simplified example, consider a game between a drug dealer (max player) and the law
enforcement (min player). Each day, the drug dealer chooses one of n locations for a drop,
while law enforcement chooses a location for a random check. If their locations coincide, the
game ends as the drug dealer is caught. Until then, the drug dealer wants to maximize his
revenue from the sale of drugs, while law enforcement wants to minimize the cost to society
by illicit drug use. Similar examples can be found in reinforcement learning or robot motion
planning, where an agent, e.g., a spy robot, is trying to learn an unknown environment. The
agent gets a reward from exploring one of n locations, while its adversary (security systems,
nature, etc.) actively tries to minimize how much the agent discovers before catching the
infiltrating agent.

RUC games generalize hand cricket [13, 3], a popular game played by children in India.
Hand cricket is a contest between a “batter” (max player) and a “bowler” (min player). In a
round, the batter and bowler simultaneously choose actions i and j from {1, . . . , n}. This
gives the batter a score of i, while the bowler suffers a cost of i. The game ends if i = j, i.e.,
the batter is declared “out”. Hand cricket involves the batter trying to maximize her total
score and the bowler trying to minimize it. Note that this is an example of a zero-sum RUC
game, where the payoff to the max player equals the cost borne by the min player.

We also note that RUC games can be thought of as repeated hide-and-seek games [31, 30]
between two players, the Hider and the Seeker. In a hide-and-seek game, there are n locations
containing varying rewards. The Hider tries to collect as much reward as possible, before
getting caught by the Seeker, who aims to minimize the reward lost to the Hider. Like hand
cricket, repeated hide-and-seek is also a zero-sum RUC game.

Nash equilibria in RUC games. Our paper addresses the following natural questions about
RUC games:

Do Repeated-Until-Collision games admit Nash equilibria? If so, are they unique?
Can they be computed efficiently?

At first glance, it is not even clear if an NE should exist for general RUC games. Intuitively,
the min player would like a collision to happen soon to prevent accumulating a large cost,
while the max player would like to delay a collision. Additionally, if some row of A has large
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numbers, the max player would want to pick the action corresponding to that row more
frequently. These two approaches are at odds with each other, e.g., if the max player picks a
single action very frequently, the min player can pick the same action and cause a collision
very soon. Hence, the players must pick distributions of actions that balance the per-round
score (or cost) and the duration of the game. Whether distributions in which neither player
has an incentive to deviate unilaterally (i.e., Nash equilibrium) exist is unclear.

1.1 Our Results
As a warm-up, we begin by looking at a simpler version of RUC games called stationary
Repeated-Until-Collision (SRUC) games, where the players are restricted to use only stationary
strategies. A stationary strategy is one where in each round, the player samples an action
from the same distribution. Formally, given a vector x ∈ ∆n (where ∆n is the n-dimensional
standard simplex), the stationary strategy x is to pick action i in each round independently
randomly with probability xi for each i ∈ {1, . . . , n}. Intuitively, stationary strategies make
sense for RUC games, since the game has a recursive structure: if a collision doesn’t happen
in the first round, the remaining game is identical to the original. Moreover, stationary
strategies are a natural choice for players constrained on computational resources, since they
are independent of the game history.

Under mild assumptions on matrices A and B, we show that a Nash equilibrium always
exists for the SRUC game (A, B), and is unique.

▶ Definition 1. For any matrix A ∈ Rn×n
≥0 , let graph(A) := (V, E) be a directed graph where

V := {1, . . . , n} and E := {(i, j) : i ∈ V, j ∈ V \ {i}, Ai,j > 0}. Then A is called irreducible
iff graph(A) is strongly connected.

▶ Theorem 2. Let A and B be irreducible matrices. Then a Nash equilibrium exists for the
SRUC game (A, B). Furthermore, the Nash equilibrium is unique iff graph(A) is a subgraph
of graph(B).

We prove Theorem 2 in Section 3. Our existence result uses the Perron-Frobenius theorem
[21], a central result from matrix theory, and shows that the NE strategies can be computed
from the leading eigenvectors of the payoff matrices.

In Appendix E of the full version [23], using more involved techniques, we also show the
existence of NE for SRUC games with reducible payoff matrices. Furthermore, if either A or
B is reducible, Nash equilibria need not be unique.

In Section 4, we switch back from SRUC games to RUC games, i.e., we allow players to
play non-stationary strategies. This setting is significantly more challenging to analyze due
to its large and complicated strategy space. Since strategies can be history-dependent, a
deterministic strategy can be viewed as a function assigning an action to every possible state
of the game, where the state is given by the players’ actions in past rounds. Such functions
have an infinite domain since the game’s history can grow arbitrarily large, which implies that
the set of deterministic strategies is uncountably infinite. So, randomized strategies, defined
as probability distributions over deterministic strategies, are tough to analyze formally since
these probability distributions have a large and unusual sample space.

Although RUC games allow non-stationary strategies, it is not obvious if players benefit
from this extra freedom. If one player uses a stationary strategy, it is a priori unclear if the
other player can gain by deviating unilaterally to a non-stationary strategy. Interestingly, we
show that every RUC game admits a Nash equilibrium with stationary strategies.

FSTTCS 2023
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▶ Theorem 3. Let A and B be irreducible matrices. Then there exists a pair of stationary
strategies (x∗, y∗) that is a Nash equilibrium for both the RUC game (A, B) and the SRUC
game (A, B).

Furthermore, we show that for zero-sum RUC games (i.e., when A = B), the Nash
equilibrium (x∗, y∗) is unique up to equivalence, i.e., it is impossible to distinguish between
different Nash equilibria just by observing the players’ actions.

Having studied the existence of Nash equilibria in RUC games, we now turn to computation.
Since the eigenvectors could be irrational, we consider approximate Nash equilibria. In an
ε-approximate NE, neither player can improve their payoff by a factor of (1 + ε) through
unilateral deviations. We show that fine-enough approximations to the leading eigenvectors
of the payoff matrices can be used to compute approximate NE of an RUC game.

▶ Theorem 4. Let (x∗, y∗) be a Nash equilibrium for the RUC game (A, B) with full support.
For ε ∈ [0, 1), let x̂, ŷ ∈ ∆n be such that |x∗

i − x̂i| ≤ εx∗
i and |y∗

i − ŷi| ≤ εy∗
i , for all i ∈ [1..n].

Then (x̂, ŷ) is a 4ε
(1−ε)2 -approximate Nash equilibrium.

Estimating the leading eigenvalue and eigenvector of a matrix can be done via the power
method [22], an iterative method with a linear convergence rate.

1.2 Related Work
Among the earliest results on bimatrix games are von Neumann’s Minimax Theorem in
1928 on zero-sum games [25], and Nash’s fundamental result proving the existence of Nash
equilibria in bimatrix games [24]. Subsequently the field of algorithmic game theory [26] has
devoted considerable attention to the computation of NE in games, with a series of works
showing PPAD-completeness [28] even for computing an approximate NE [28, 12, 9]. PPAD-
hardness was then shown for many important subclasses, including constant-rank games [19],
sparse games [10], win-lose games [11], etc. On the other hand, approximation schemes for
finding approximate NE are known for classes like low rank games [16, 2] (FPTAS), and
when (A + B) is sparse [5] (PTAS).

Repeated games are well-understood in terms of “Folk Theorems”, which indicate that
several models of repeated games admit many Nash equilibria [14]. There are many models
of repeated games, differing on the horizon for which the game is played (finite or infinite),
aggregate utility to the players (arithmetic mean of payoffs in each round, or a sum of payoffs
with a discount δ ∈ (0, 1)), and the kind of equilibrium in consideration (Nash or subgame
perfect Nash equilibrium). Finite games with arithmetic mean of payoffs as the utility admit
a Nash equilibrium via backward induction [6]. Infinite games where the utility is the limit
of the arithmetic mean of the payoffs have been shown to admit Nash equilibria assuming
certain kinds of punishments used to deter players from deviating [4, 29]. Infinite games
with the utility being a discounted sum of payoffs per round have also been shown to admit
equilibria under different conditions on the base game and punishments [15, 14]. In contrast
to these works, in our model of RUC games, the utility of a player is the (undiscounted)
sum of per-round payoffs. Furthermore, while an RUC game can allow for infinitely many
rounds, under reasonable conditions on the payoff matrices (discussed in Section 3), the play
terminates in finite time with probability 1 due to collisions. We also do not assume any
external model of punishment to prevent agents from deviating.

Finally, we note a superficial similarity of RUC games with stochastic games [32]. A
stochastic game is a repeated game with an underlying state space. In each round, players
simultaneously choose actions from some action set, based on which they get payoffs and the
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state of the game changes stochastically according to some transition matrix. The utility to
a player is typically assumed to be the discounted sum of the payoffs per round. Stochastic
games are known to admit Nash equilibria [32]. A key point of difference between stochastic
games and RUC games is that literature on stochastic games only considers stationary
strategies, whereas strategies in our RUC games do not have this restriction.

2 Preliminaries

Notation. We introduce some relevant notation.
1. For any boolean proposition P , let 1(P ) be 1 if P is true and 0 otherwise.
2. For n ∈ Z≥0, let [1..n] := {1, 2, . . . , n}.
3. For any matrix A ∈ Rm×n, let Ai,j or A[i, j] denote the entry in the ith row and jth

column. For any vector v ∈ Rn, let vi denote the ith entry of the vector.
4. For n ∈ Z≥1, let ∆n := {x ∈ Rn

≥0 :
∑n

i=1 xi = 1}.
5. For any vector v ∈ Rn, let support(v) := {i ∈ [1..n] : vi ̸= 0}. v is said to have full

support if support(v) = [1..n].
6. For a vector v ∈ Rn, define ∥v∥1 :=

∑n
i=1 |vi|.

7. For any i ∈ Z≥1, let e(i) be a vector such that e(i)
i = 1 and e(i)

j = 0 for all j ̸= i.

Two-Player Games. We study two-player games between a max player, who is interested
in maximizing her payoff, and a min player, who is interested in minimizing her payoff. We
let X and Y denote the strategy space of the max and min players, respectively. When the
max and min players use strategies x ∈ X and y ∈ Y, respectively, the max player gets a
score f1(x, y) and the min player incurs a cost of f2(x, y), where these payoffs are given by
functions f1, f2 : X × Y → R∪ {∞}. When f1 = f2, the game is said to be a zero-sum game.

Nash equilibrium. A Nash equilibrium (NE) is pair of strategies where no player can
improve her payoff by unilaterally changing her strategy.

▶ Definition 5. Let f1, f2 : X × Y → R ∪ {∞} be the players’ payoff functions. The pair
(x∗, y∗) ∈ X × Y is called a Nash equilibrium if no player can improve their payoff by
switching to a different strategy. Formally,
1. (Max player cannot improve) ∀x ∈ X , f1(x, y∗) ≤ f1(x∗, y∗).
2. (Min player cannot improve) ∀y ∈ Y, f2(x∗, y) ≥ f2(x∗, y∗).

While NE always exist for bimatrix games, they need not exist for general games. Moreover,
NE may not be unique, i.e., multiple distinct NE may exist. We now define approximate NE.

▶ Definition 6. Let f1, f2 : X × Y → R ∪ {∞} be the players’ payoff functions. The pair
(x∗, y∗) ∈ X × Y is called an ε-approximate Nash equilibrium if no player can improve their
payoff by a factor of (1 + ε) by switching to a different strategy. Formally,
1. (Max player cannot improve) ∀x ∈ X , f1(x, y∗) ≤ (1 + ε) · f1(x∗, y∗).
2. (Min player cannot improve) ∀y ∈ Y, f2(x∗, y) ≥ (1 + ε)−1 · f2(x∗, y∗).

Zero-Sum Games. For a two-player zero-sum game, the following theorem shows that all
Nash equilibria give the same payoffs to the agents, so the agents don’t prefer any one of
them over the other.

FSTTCS 2023
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▶ Proposition 7. Let (f, f) be a zero-sum game, where f : X × Y → R ∪ {∞}. If (f, f)
admits multiple Nash equilibria, they have the same payoff. Formally, if (x1, y1) and (x2, y2)
are Nash equilibria, then f(x1, y1) = f(x2, y2) = f(x1, y2) = f(x2, y1). Moreover, (x1, y2)
and (x2, y1) are also Nash equilibria.

Proof. Since (x1, y1) is a Nash equilibrium, the max player doesn’t gain by switching to x2
and min player doesn’t gain by switching to y2. Hence, f(x2, y1) ≤ f(x1, y1) ≤ f(x1, y2).
Since (x2, y2) is a Nash equilibrium, the max player doesn’t gain by switching to x1 and
the min player doesn’t gain by switching to y1. Hence, f(x1, y2) ≤ f(x2, y2) ≤ f(x2, y1).
Combining these inequalities gives us f(x1, y1) = f(x2, y2) = f(x1, y2) = f(x2, y1).

For any x and y, we get f(x, y2) ≤ f(x2, y2) = f(x1, y2) = f(x1, y1) ≤ f(x1, y), and
f(x, y1) ≤ f(x1, y1) = f(x2, y1) = f(x2, y2) ≤ f(x2, y). Hence, (x1, y2) and (x2, y1) are also
Nash equilibria. ◀

3 Nash Equilibria in Stationary RUC games

In this section, we study Nash equilibria for SRUC games, i.e., an RUC game (A, B) where
agents are forced to use only stationary strategies. Let e(A)(x, y) and e(B)(x, y) be the max
player’s expected total score and the min player’s expected total cost, when the max and
min players play stationary strategies x and y, respectively.

▶ Lemma 8. Let (A, B) represent an SRUC game. Let x and y be the max player’s and min
player’s stationary strategies, respectively. Then for C ∈ {A, B}, we have

e(C)(x, y) =


xTCy
xTy if xTy > 0

∞ if xTy = 0 and xTCy > 0
0 if xTy = xTCy = 0

.

Proof sketch. (See Appendix A of the full version [23] for the full proof.)
The max player’s expected per-round score is xTAy, and the probability of collision in

a round is xTy. If xTy = 0, a collision never happens, and so her total score is ∞ or 0
depending on whether xTAy > 0. If xTy > 0, then we can find µ := e(A)(x, y) by solving the
equation µ = xTAy + (1 − xTy)µ, which gives µ = xTAy/xTy. The min player’s expected
total cost can be found analogously. ◀

From now on, instead of looking at SRUC games as multi-round games, we will treat
them like single round games where the strategy space is ∆n for both players, and the payoff
functions are e(A) and e(B) for the max player and min player, respectively.

3.1 Existence of Nash Equilibrium
This section shows the existence of a Nash equilibrium in SRUC games. We first recall the
definitions of an eigenvalue and eigenvector of a matrix.

▶ Definition 9. For a square matrix A ∈ Rn, complex number λ, and complex vector
v ∈ Cn − {0}, (λ, v) is called an eigenpair of A (and λ is called an eigenvalue of A and v is
called an eigenvector of A) if Av = λv.

▶ Lemma 10. For a square matrix A, λ is an eigenvalue of A iff λ is an eigenvalue of AT .

Proof. λ is an eigenvalue of A iff det(A − λI) = 0, and det(A − λI) = det(AT − λI). ◀
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The following lemma establishes a sufficient condition for a strategy pair to be a Nash
equilibrium of an SRUC game.

▶ Lemma 11. Consider the SRUC game (A, B). Let (α, y∗) be an eigenpair for A such
that ∥y∗∥1 = 1 and y∗

i > 0 for all i ∈ [1..n]. Let (β, x∗) be an eigenpair for BT such that
∥x∗∥1 = 1 and x∗

i > 0 for all i ∈ [1..n]. Then (x∗, y∗) is a Nash equilibrium. Moreover, for
any x, y ∈ ∆n, we have e(A)(x, y∗) = α and e(B)(x∗, y) = β.

Proof. Let x, y ∈ ∆n. Since x∗ and y∗ have full support, x∗Ty > 0 and xTy∗ > 0. Also, by
Lemma 8,

e(A)(x, y∗) = xTAy∗

xTy∗ = xT(αy∗)
xTy∗ = α. e(B)(x∗, y) = x∗TBy

x∗Ty
= (βx∗)Ty

x∗Ty
= β.

Hence, (x∗, y∗) is a Nash equilibrium. ◀

We now show that such strategy pairs exist due to the Perron-Frobenius theorem stated
below, thus proving the existence of Nash equilibrium for SRUC games in Theorem 14.

▶ Theorem 12 (Perron-Frobenius [21]). Let A ∈ Rn×n
≥0 be an irreducible matrix. Then

1. There exists a (unique) positive eigenvalue ρ of A, called the Perron root of A, such that
for any other (possibly complex) eigenvalue λ of A, |λ| ≤ ρ.

2. There exist unique vectors u and v such that ATu = ρu, Av = ρv, and
∑n

i=1 ui =∑n
j=1 vj = 1. u and v are called the left and right Perron vectors of A, respectively.

3. ui > 0 and vi > 0 for all i ∈ [1..n].

4.
n

min
i=1

n∑
j=1

Ai,j ≤ ρ ≤ nmax
i=1

n∑
j=1

Ai,j , and
n

min
j=1

n∑
i=1

Ai,j ≤ ρ ≤ nmax
j=1

n∑
i=1

Ai,j.

▶ Definition 13. For irreducible matrices A and B, let perronSolution(A, B) be the tuple
(ρA, ρB , x∗, y∗), where ρA is the Perron root of A, y∗ is the right Perron vector of A, ρB is
the Perron root of B, and x∗ is the left Perron vector of B.

▶ Theorem 14. For the SRUC game (A, B), where A and B are irreducible matrices, let
(ρA, ρB , x∗, y∗) = perronSolution(A, B). Then (x∗, y∗) is a Nash equilibrium. Moreover, for
any x, y ∈ ∆n, we have e(A)(x, y∗) = ρA and e(B)(x∗, y) = ρB.

Proof. Follows from Theorem 12 and Lemma 11. ◀

3.2 Uniqueness of Nash Equilibrium
In this section, we show that an SRUC game has a unique NE under mild assumptions on
the payoff matrices. We begin with two lemmas which together show that any NE of an
SRUC game has both players using strategies with full support, provided the payoff matrices
A and B are irreducible and graph(A) is a subgraph of graph(B).

▶ Lemma 15. Let (x∗, y∗) be a Nash equilibrium for the SRUC game (A, B), where A is
irreducible and graph(A) is a subgraph of graph(B). Then support(y∗) = [1..n].

Proof. The key idea is that if y∗ doesn’t have full support, then the max player is incentivized
to play a strategy outside support(y∗) to get an infinite score. Such a strategy would impose
an infinite cost on the min player. Finally, it’s possible for the min player to have a bounded
cost by playing a full-support strategy.

FSTTCS 2023



18:8 Two-Player Matrix Games Repeated Until Collision

For any C ∈ {A, B}, let ([1..n], EC) := graph(C). Let EC := [1..n] × [1..n] \ EC . For any
x, y ∈ ∆n such that xTy = 0, we get xTCy = 0 ⇐⇒ support(x) × support(y) ⊆ EC . Since
EA ⊆ EB , we get xTAy > 0 =⇒ xTBy > 0.

Let Sy := support(y∗). Suppose Sy ̸= [1..n]. Then ∃(i, j) ∈ EA from [1..n] \ Sy to Sy,
since A is irreducible. Hence, (e(i))TAy∗ =

∑
k∈Sy

Ai,ky∗
k ≥ Ai,jy∗

j > 0. Also, (e(i))Ty∗ = 0,
since i ̸∈ Sy. Hence, e(A)(e(i), y∗) = ∞.

Since (x∗, y∗) is a Nash equilibrium, ∞ = e(A)(e(i), y∗) ≤ e(A)(x∗, y∗). This is only
possible if x∗Ty∗ = 0 and x∗TAy∗ > 0. This means x∗TBy∗ > 0, and so e(B)(x∗, y∗) = ∞.

Let ŷj = 1/n for all j ∈ [1..n]. Then x∗Tŷ > 0, so e(B)(x∗, ŷ) is finite. Since (x∗, y∗) is a
Nash equilibrium, we get ∞ = e(B)(x∗, y∗) ≤ e(B)(x∗, ŷ) ̸= ∞. This is a contradiction, so
support(y∗) = [1..n]. ◀

▶ Lemma 16. Let (x∗, y∗) be a Nash equilibrium for SRUC game (A, B), where B is
irreducible and support(y∗) = [1..n]. Then support(x∗) = [1..n].

Proof. The key idea is that if x∗ doesn’t have full support, then the min player can reduce
her cost by not playing actions outside support(x∗).

Let Sx := support(x∗). Let α :=
∑

j∈Sx
y∗

j . Then 1 − α =
∑

j∈[1..n]\Sx
y∗

j . Suppose
Sx ̸= [1..n]. Then 0 < α < 1, since support(y∗) = [1..n]. Define vectors ŷ and ỹ as follows:

ŷj =
{

y∗
j /α if j ∈ Sx

0 if j ̸∈ Sx

, ỹj =
{

0 if j ∈ Sx

y∗
j /(1 − α) if j ̸∈ Sx

.

Then y∗ = αŷ + (1 − α)ỹ and x∗Ty∗ = αx∗Tŷ. Hence,

e(B)(x∗, y∗) = x∗TBy∗

x∗Ty∗ = αx∗TBŷ + (1 − α)x∗TBỹ
αx∗Tŷ

= e(B)(x∗, ŷ) + 1 − α

α

x∗TBỹ
x∗Tŷ

.

Since (x∗, y∗) is a Nash equilibrium, e(B)(x∗, y∗) ≤ e(B)(x∗, ŷ). Hence, x∗TBỹ = 0. However,

x∗TBỹ =
∑
i∈Sx

∑
j∈[1..n]\Sx

x∗
i Bi,j ỹj .

Since B is irreducible, there is an edge (i, j) in graph(B) from Sx to [1..n] \ Sx. Therefore,
x∗TBỹ ≥ Bi,jx∗

i ỹj > 0, which is a contradiction. Hence, support(x∗) = [1..n]. ◀

We now state a simple result about the ratio of sums (Lemma 17), and use it to prove
that full support Nash equilibria must be eigenvectors (Lemma 18).

▶ Lemma 17. Let u ∈ Rn and v ∈ Rn
>0. Let

α :=
n

min
i=1

ui

vi
β := nmax

i=1

ui

vi
z :=

∑n
i=1 ui∑n
i=1 vi

.

Then either z = α = β or α < z < β.

Proof. If α = β, then ui/vi = α for all i ∈ [1..n], and hence z = α. Now let α < β. Then
αvi ≤ ui ≤ βvi for all i ∈ [1..n]. Pick p and q such that up/vp = α and uq/vq = β. Then

n∑
i=1

ui ≤ αvp +
∑

i∈[1..n]\{p}

βvi < β

n∑
i=1

vi,

n∑
i=1

ui ≥
∑

i∈[1..n]\{q}

αvi + βvq > α

n∑
i=1

vi.

Hence, α < z < β. ◀
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▶ Lemma 18. Let (x∗, y∗) be a Nash equilibrium for SRUC game (A, B) such that
support(x∗) = support(y∗) = [1..n]. Then (e(B)(x∗, y∗), x∗) is an eigenpair of BT and
(e(A)(x∗, y∗), y∗) is an eigenpair of A.

Proof. For i ∈ [1..n], let wi := x∗
i y∗

i . Then wi > 0 for all i ∈ [1..n].
For j ∈ [1..n], let uj := (BTx∗)jy∗

j . Let

αx :=
n

min
j=1

uj

wj
=

n
min
j=1

(BTx∗)j

x∗
j

βx := nmax
j=1

uj

wj
= nmax

j=1

(BTx∗)j

x∗
j

Let p and q be indices such that up/wp = αx and uq/wq = βx. Then e(B)(x∗, e(p)) = αx,
e(B)(x∗, e(q)) = βx, and e(B)(x∗, y∗) = (

∑n
j=1 uj)/(

∑n
j=1 wj). Suppose αx ̸= βx. Then

by Lemma 17, e(B)(x∗, e(p)) < e(B)(x∗, y∗) < e(B)(x∗, e(q)). This contradicts the fact that
(x∗, y∗) is a Nash equilibrium. Hence, αx = βx = e(B)(x∗, y∗) and (BTx∗)j/x∗

j = αx for all
j ∈ [1..n]. Hence, (αx, x∗) is an eigenpair of BT .

For i ∈ [1..n], let vi := x∗
i (Ay∗)i. Let

αy :=
n

min
i=1

vi

wi
=

n
min
i=1

(Ay∗)i

y∗
i

βy := nmax
i=1

vi

wi
= nmax

i=1

(Ay∗)i

y∗
i

We can similarly show that αy = βy = e(A)(x∗, y∗) and (αy, y∗) is an eigenpair of A. ◀

Finally, we show that non-negative eigenvectors are essentially Perron vectors (Lemma 19),
and use this result to establish uniqueness of Nash equilibrium (Theorem 20).

▶ Lemma 19. Let A ∈ Rn×n
≥0 be an irreducible matrix. Let ρ be the Perron root of A, and u

and v be the left and right Perron vectors of A, respectively. Then both of these hold:
1. If (λ, y) is an eigenpair of A such that yi ≥ 0 ∀i and ∥y∥1 = 1, then λ = ρ and y = v.
2. If (λ, x) is an eigenpair of AT such that xi ≥ 0 ∀i and ∥x∥1 = 1, then λ = ρ and x = u.

Proof. ρuTy = (ATu)Ty = uT(Ay) = λuTy. Since support(u) = [1..n], we get uTy > 0.
Hence, λ = ρ. By Theorem 12, v is the unique eigenvector corresponding to eigenvalue ρ such
that ∥v∥1 = 1. Hence, y = v. We get part 2 of the lemma by applying part 1 on AT . ◀

▶ Theorem 20. Let (A, B) be an SRUC game, where A and B are irreducible and graph(A)
is a subgraph of graph(B). Let (ρA, ρB , x∗, y∗) = perronSolution(A, B). Then (x∗, y∗) is the
unique Nash equilibrium for this SRUC game.

Proof. Let (x̂, ŷ) be any Nash equilibrium for SRUC game (A, B). From Lemmas 15 and 16,
we get support(x̂) = support(ŷ) = [1..n].

Let σC := e(C)(x̂, ŷ) for C ∈ {A, B}. By Lemma 18, (σB , x̂) is an eigenpair of BT and
(σA, ŷ) is an eigenpair of A. By Lemma 19, we get σB = ρB , x̂ = x∗, σA = ρA, ŷ = y∗. ◀

Theorem 20 shows uniqueness of NE of an SRUC game (A, B) under two conditions: (i)
A and B are irreducible, and (ii) graph(A) ⊆ graph(B). The following two lemmas show
that if either of these conditions is relaxed, we can no longer guarantee uniqueness of NE.

▶ Lemma 21. Let (A, B) be an SRUC game. Suppose ∃(i, j) such that i ̸= j, Ai,j > 0,
and Bi,j = 0. Then (e(i), e(j)) is a Nash equilibrium. Moreover, e(A)(e(i), e(j)) = ∞ and
e(B)(e(i), e(j)) = 0.

Proof. e(i)T
Ae(j) = A[i, j] > 0, e(i)T

Be(j) = B[i, j] = 0, and e(i)Te(j) = 0. ◀
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The NE in Lemma 21 is deterministic but the NE in Theorem 14 is randomized, implying
that the game has at least two NE. Hence, the condition graph(A) ⊆ graph(B) is necessary
for uniqueness of NE if A and B are irreducible. The next lemma shows that if either A or
B is reducible, then uniqueness of NE is not guaranteed.

▶ Lemma 22. Let (A, A) be an SRUC game where A :=
(

1 0
0 2

)
. Then (x, y) is a Nash

equilibrium iff support(x) = {1, 2} and y = [1, 0].

Proof. Observe that A is reducible. For any x, y ∈ ∆2, if x2 > 0 and y2 > 0, then
e(A)(x, y) = 1 + x2y2/(x1y1 + x2y2) > 1. When xTy = 0, we get e(A)(x, y) = 0. Otherwise,
e(A)(x, y) = 1. This is summarized by the following table:

x \ y [1, 0] mix [0, 1]
[1, 0] 1 1 0
mix 1 > 1 > 1
[0, 1] 0 > 1 > 1

This table shows that (x, y) is a NE iff support(x) = {1, 2} and y = [1, 0]. ◀

The above example also shows that unlike the guarantee of Theorem 14, Nash equilibrium
strategies may not have full support.

3.3 Approximate Nash Equilibrium
It may not be possible to compute Nash equilibria for SRUC games exactly, e.g., if eigenvectors
are irrational. Hence, we would like to compute approximate Nash equilibria. We will use
the following lemma.

▶ Lemma 23. Let x∗, x̂ ∈ ∆n and δ ∈ [0, 1) such that support(x∗) = [1..n] and |x̂i −x∗
i | ≤ δx∗

i

for all i ∈ [1..n]. Then support(x̂) = [1..n] and for any matrix C ∈ Rn×n
≥0 and any j ∈ [1..n],

(CTx̂)j

x̂j
∈

[
1 − δ

1 + δ

(CTx∗)j

x∗
j

,
1 + δ

1 − δ

(CTx∗)j

x∗
j

]
.

Proof. For any i ∈ [1..n], we have x̂i ∈ [(1 − δ)x∗
i , (1 + δ)x∗

i ]. Hence, support(x̂) = [1..n].

|(CTx̂)j − (CTx∗)j | ≤ |(CT(x̂ − x∗))j | ≤

∣∣∣∣∣
n∑

i=1
C[i, j](x̂i − x∗

i )

∣∣∣∣∣
≤

n∑
i=1

C[i, j]|x̂i − x∗
i | ≤ δ

n∑
i=1

C[i, j]x∗
i = δ(CTx∗)j .

=⇒ (CTx̂)j ∈ [(1 − δ)(CTx∗)j , (1 + δ)(CTx∗)j ]

=⇒ (CTx̂)j

x̂j
∈

[
1 − δ

1 + δ

(CTx∗)j

x∗
j

,
1 + δ

1 − δ

(CTx∗)j

x∗
j

]
. ◀

We now show that a close-enough approximation to a NE is an approximate NE of
an SRUC game. This result allows us to compute approximate NE by using methods for
approximately estimating the leading eigenvector of a matrix, such as power iteration [22].

▶ Theorem 24. Let (x∗, y∗) be a Nash equilibrium for the SRUC game (A, B) such that
support(x∗) = support(y∗) = [1..n]. For δ ∈ [0, 1), let x̂, ŷ ∈ ∆n be such that for all i ∈ [1..n],
|x̂i − x∗

i | ≤ δx∗
i and |ŷi − y∗

i | ≤ δy∗
i . Then (x̂, ŷ) is a 4δ

(1−δ)2 -approximate Nash equilibrium.
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Proof. By Lemma 18, (ρB , x∗) is an eigenpair of BT . Hence, by Lemma 23, for all j ∈ [1..n],

(BTx̂)j

x̂j
∈

[
1 − δ

1 + δ
ρB ,

1 + δ

1 − δ
ρB

]
.

For any y ∈ ∆n, using Lemma 17, we get

e(B)(x̂, y) =
∑n

j=1(BTx̂)jyj∑n
j=1 x̂jyj

∈
[

n
min
j=1

(BTx̂)j

x̂j
,

nmax
j=1

(BTx̂)j

x̂j

]
=

[
1 − δ

1 + δ
ρB ,

1 + δ

1 − δ
ρB

]
.

In particular, for y = ŷ, we get e(B)(x̂, ŷ) ≤ 1+δ
1−δ ρB . Let ε := 4δ

(1−δ)2 . Thus, for any y ∈ ∆n,

e(B)(x̂, y) ≥ 1 − δ

1 + δ
ρB ≥

(
1 − δ

1 + δ

)2
e(B)(x̂, ŷ) = e(B)(x̂, ŷ)

1 + ε
.

We can analogously show that for any x ∈ ∆n,

e(A)(x, ŷ) ≤
(

1 + δ

1 − δ

)2
e(A)(x̂, ŷ) = (1 + ε) · e(A)(x̂, ŷ).

Hence, (x̂, ŷ) is an ε-approximate NE. ◀

4 Nash Equilibria in General RUC games

In this section, we study RUC games when players are allowed to use non-stationary strategies.
As discussed in the Introduction, the strategy space can be complicated in general RUC
games. We first describe a framework for defining strategies in a RUC game.

4.1 Strategy Space of RUC games
A deterministic (possibly non-stationary) strategy in an RUC game is a function f that takes
as input a list of actions played by the opponent so far and outputs the next action for the
player. E.g., if the max player is using a deterministic strategy f , then in the kth round, the
max player will play the action f(J), where J := [j1, j2, . . . , jk−1] is the list of actions played
by the min player in the first k − 1 rounds.

A randomized strategy is a distribution over deterministic strategies. Formally, let [1..n]∗
be the set of all finite lists where each element is in [1..n]. Let Ω be the set of all deterministic
strategies, i.e., the set of all functions from [1..n]∗ to [1..n]. Then a randomized strategy
is given by a probability space (Ω, E , P ). Recall that in a probability space, E ⊆ 2Ω is the
set of events and P : E → [0, 1] is a probability measure. If a randomized strategy f is
sampled from this probability space, then for any set F ∈ E of deterministic strategies, we
say Pr(f ∈ F ) := P (F ).

For any x ∈ ∆n, and any random variable X ∈ [1..n], we write X ∼ x to say that
Pr(X = i) = xi for all i ∈ [1..n]. The length of a list L, denoted by |L|, is the number of
elements in L. Unless specified otherwise, assume all lists are finite.

▶ Definition 25 (stationary strategy). Let x ∈ ∆n. Let [I0, I1, . . .] be an infinite sequence of
independent random variables where for each t ∈ Z≥0, It ∈ [1..n] and It ∼ x. Then stat(x)
is a strategy f where f(J) := I|J|. stat(x) is called the stationary strategy for parameter x.

With a little abuse of notation, we will sometimes write x instead of stat(x).
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Residual Strategies. For any two lists L1 and L2, let L1 + L2 denote their concatenation.
Let ∅ denote the empty list. Let [x] denote a list of length 1 containing the element x.

Given a list K ∈ [1..n]∗ and a strategy f , define the function fK as fK(K ′) := f(K +K ′).
Intuitively, if a player is using strategy f , then after the opponent has played actions K, fK

is the strategy for the remaining game. fK is called the K-residual strategy of f . Due to
the recursive nature of RUC games, residual strategies are helpful in their analysis.

Let I := [i1, . . . , ik] and J := [j1, . . . , jk] be lists. Let f be a randomized strategy. We want
to define f (I,J) as the strategy fJ conditioned on the player responding with actions I when
the opponent plays actions J . Formally, let isResp(f, I, J) be the event that a player using
strategy f responds with actions I to opponent’s actions J , i.e., ∀t ∈ [1..k], f([j1, . . . , jt−1]) =
it. Call (I, J) a feasible history for f if Pr(isResp(f, I, J)) > 0. For any feasible history (I, J)
of f , define f (I,J), called the (I, J)-residual strategy of f , as a strategy having distribution

Pr(f (I,J) ∈ F ) := Pr(fJ ∈ F | isResp(f, I, J)).

Intuitively, stationary strategies should remain unchanged when conditioned on past
actions. We prove this formally.

▶ Lemma 26. stat(x)(I,J) has the same distribution as stat(x).

Proof. (See Appendix C.1 of the full version [23].) ◀

Expected Score. Consider the RUC game (A, B), where A and B are n × n matrices.
Assume that the max player’s and min player’s strategies are independent. We now formally
define the expected score (or cost) of a pair of strategies, and obtain a recursive expression
for it to make analysis easier.

▶ Definition 27 (score). Let S(A,r)(f, g) and S(B,r)(f, g) be the max player’s total score and
min player’s total cost, respectively, in the first r rounds of the RUC game (A, B) when the
max player uses strategy f and the min player uses strategy g. (Note that when f and g are
randomized strategies, S(A,r)(f, g) and S(B,r)(f, g) are random variables.) For C ∈ {A, B},
let e(C,r)(f, g) := E(S(C,r)(f, g)) and e(C,∞)(f, g) := limr→∞ e(C,r)(f, g).

▶ Observation 28. The sequence [S(C,r)(f, g)]∞r=0 is monotonically increasing, so the sequence
[e(C,r)(f, g)]∞r=0 is also monotonically increasing. By the monotone convergence theorem,
e(C,∞)(f, g) ∈ R≥0 ∪ {∞}, i.e., the sequence [e(C,r)(f, g)]∞r=0 either has a non-negative limit
or is unbounded.

▶ Observation 29. Let f and g be strategies of the max and min players, respectively. Let
u := f(∅) and v := g(∅). Then for C ∈ {A, B},

S(C,r)(f, g) =
{

C[u, v] + 1(u ̸= v)S(C,r−1)(f [v], g[u]) if r > 0
0 otherwise

.

▶ Lemma 30. Let f and g be independent strategies of the max and min players, respectively.
Let f(∅) ∼ x, g(∅) ∼ y, Sx := support(x), and Sy := support(y). Then for C ∈ {A, B},

e(C,r)(f, g) =


xTCy +

∑
i∈Sx

∑
j∈Sy

xiyj1(i ̸= j)e(C,r−1)(f ([i],[j]), g([j],[i])) if r > 0

0 otherwise
,

e(C,∞)(f, g) = xTCy +
∑
i∈Sx

∑
j∈Sy

xiyj1(i ̸= j)e(C,∞)(f ([i],[j]), g([j],[i])).
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Proof sketch. Follows from Observation 29. See Appendix C.1 of the full version [23] for
the full proof. ◀

4.2 Existence of Nash Equilibrium
To see whether a pair of stationary strategies can give us a Nash equilibrium, we first
investigate (in the next two lemmas) the upper and lower bounds on a player’s payoff when
she is free to play any strategy (even non-stationary ones) and her opponent uses a stationary
strategy with full support.

▶ Lemma 31. Let (A, B) be an RUC game. Let x̂ ∈ ∆n such that support(x̂) = [1..n].
Let α := minn

i=1(BTx̂)i/x̂i and β := maxn
i=1(BTx̂)i/x̂i. Then for any strategy g, we have

α ≤ e(B,∞)(x̂, g) ≤ β.

Proof. By the definition of α and β, and by Lemma 17, we get that for any y ∈ ∆n, we have
αx̂Ty ≤ x̂TBy ≤ βx̂Ty.

Define the predicate P (r) : ∀g, e(B,r)(x̂, g) ≤ β. We will prove P (r) by induction, and
that would imply P (∞). The base case holds, since e(B,0)(x̂, g) = 0 ≤ β. Now fix r ≥ 1, g,
and let g(∅) ∼ y and Sy := support(y). Then by Lemma 30,

e(B,r)(x̂, g) = x̂TBy +
n∑

i=1

∑
j∈Sy

x̂iyj1(i ̸= j)e(B,r−1)(x̂, g([j],[i]))

≤ βx̂Ty +
n∑

i=1

n∑
j=1

x̂iyj1(i ̸= j)β = β. (by inductive hypothesis)

This proves P (r), and hence, also proves P (∞).
Next, we need to prove that e(B,∞)(x̂, g) ≥ α for all g. Let µ := infg e(B,∞)(x̂, g). Pick any

ε > 0. Let ĝ be a strategy such that e(B,∞)(x̂, ĝ) ≤ µ + ε. Let ĝ(∅) ∼ ŷ and Sy := support(ŷ).
Let γ := minn

i=1 x̂i. Then x̂Tŷ ≥ γ, and by Lemma 30,

µ + ε ≥ e(B,∞)(x̂, ĝ) = x̂TBŷ +
n∑

i=1

∑
j∈Sy

x̂iŷj1(i ̸= j)e(B,∞)(x̂, ĝ([j],[i]))

≥ αx̂Tŷ +
n∑

i=1

n∑
j=1

x̂iŷj1(i ̸= j)µ = µ + x̂Tŷ(α − µ).

Since support(x̂) = [1..n], we get γ > 0 and α − µ ≤ ε/x̂Tŷ ≤ ε/γ. Since this is true for all
ε > 0, we get α ≤ µ. Hence, α ≤ e(B,∞)(x̂, g) ≤ β for every strategy g. ◀

▶ Lemma 32. Let (A, B) be an RUC game. Let ŷ ∈ ∆n such that support(ŷ) = [1..n].
Let α := minn

i=1(Aŷ)i/ŷi and β := maxn
i=1(Aŷ)i/ŷi. Then for any strategy f , we have

α ≤ e(A,∞)(f, ŷ) ≤ β.

Proof. (Similar to the proof of Lemma 31.) ◀

Next, we identify sufficient conditions (as in Lemma 11 in Section 3) to make the upper
and lower bounds in Lemmas 31 and 32 coincide, which gives us a Nash equilibrium.

▶ Lemma 33. Consider the RUC game (A, B). Let (α, y∗) be an eigenpair for A such
that ∥y∗∥1 = 1 and y∗

i > 0 for all i ∈ [1..n]. Let (β, x∗) be an eigenpair for BT such that
∥x∗∥1 = 1 and x∗

i > 0 for all i ∈ [1..n]. Then (x∗, y∗) is a Nash equilibrium. Moreover, for
any strategies f and g, we have e(A,∞)(f, y∗) = α and e(B,∞)(x∗, g) = β.
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Proof. Follows from Lemmas 31 and 32. ◀

Next, we show that conditions of Lemma 33 can be satisfied using the Perron-Frobenius
theorem (Theorem 12), so a Nash equilibrium given by stationary strategies always exists.

▶ Theorem 34. Let (A, B) be an RUC game where A and B are irreducible (c.f. Definition 1).
Let (ρA, ρB , x∗, y∗) = perronSolution(A, B). Then (x∗, y∗) is a Nash equilibrium. Moreover,
for any strategies f and g, we have e(A,∞)(f, y∗) = ρA and e(B,∞)(x∗, g) = ρB.

Proof. Follows from Lemma 33. ◀

Note that for any stationary strategies x and y, if (x, y) is a Nash equilibrium for the
RUC game (A, B), then (x, y) is also a Nash equilibrium for the SRUC game (A, B). This
is because if a player cannot improve her payoff by switching to a different strategy, then
she also cannot improve her payoff by switching to a different stationary strategy. Hence,
Theorem 14 is a corollary of Theorem 34.

Since computing Nash equilibrium exactly may be hard, we consider approximate Nash
equilibria. To do this, we generalize the corresponding result about SRUC games (Theorem 24
in Section 3) to RUC games.

▶ Theorem 35 (approximate Nash equilibrium). Let (stat(x∗), stat(y∗)) be a Nash equilibrium
for the RUC game (A, B) such that support(x∗) = support(y∗) = [1..n]. For δ ∈ [0, 1), let
x̂, ŷ ∈ ∆n such that for all i ∈ [1..n], |x̂i − x∗

i | ≤ δx∗
i and |ŷi − y∗

i | ≤ δy∗
i . Then (x̂, ŷ) is a

4δ
(1−δ)2 -approximate Nash equilibrium for the RUC game (A, B).

Proof sketch. The proof is similar to Theorem 24. It follows from Lemmas 18, 23, 31, and 32.
See Appendix C.2 of the full version [23] for the full proof. ◀

4.3 Uniqueness of Nash Equilibrium up to Equivalence
Before we investigate the uniqueness of Nash equilibrium for RUC games, we first describe a
phenomenon where two different randomized strategies can behave similarly.

▶ Definition 36 (collisions). For lists I := [i1, . . . , ik] and J := [j1, . . . , jk], let collisions(I, J)
be the number of collisions if the max player and min player play actions I and J , respectively.
Formally, collisions(I, J) :=

∑k
t=1 1(it = jt).

The pair (I, J) is called collision-consistent if it = jt for all t < k.

▶ Definition 37. Two randomized strategies f1 and f2 are said to be equivalent if for every
collision-consistent pair (I, J), we have Pr(isResp(f1, I, J)) = Pr(isResp(f2, I, J)).

▶ Example 38. Let n = 3. For any u, v ∈ {1, 2}, let fu,v be the deterministic strategy where
fu,v(J) = u if J = [2], fu,v(J) = v if J = [3], and fu,v(J) = 1 otherwise.

For any p ∈ [0, 1/2], let hp be a randomized strategy where Pr(hp = f1,1) = Pr(hp =
f2,2) = p and Pr(hp = f1,2) = Pr(hp = f2,1) = 1/2 − p. Then for any lists I and J of the
same length, Pr(isResp(hp, I, J)) is not a function of p. Hence, h0 and h1/2 are equivalent.

We now show that given a pair of strategies, replacing each strategy by an equivalent
strategy makes no difference to anyone’s payoff.

▶ Lemma 39. Let f1 and f2 be equivalent strategies of the max player and g1 and g2
be equivalent strategies of the min player. Then for the RUC game (A, B), we have
e(C,r)(f1, g1) = e(C,r)(f2, g2) for all C ∈ {A, B} and r ∈ Z≥0 ∪ {∞}.
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Proof sketch. For any r ∈ Z≥0, the expected score in the first r rounds of a pair of strategies
only depends on the distribution of collision-consistent pairs (I, J) where |I| = |J | ≤ r. Hence,
e(C,r)(f1, g1) = e(C,r)(f2, g2). Take the limit r → ∞ to get e(C,∞)(f1, g1) = e(C,∞)(f2, g2). ◀

A corollary to Lemma 39 is that if (f1, g1) is a Nash equilibrium, then so is (f2, g2).
Next, we give a useful characterization of equivalence to stationary strategies.

▶ Lemma 40. Let x ∈ ∆n. A randomized strategy f is equivalent to stat(x) iff f (I,J)(∅) ∼ x
for every feasible history (I, J) of f where collisions(I, J) = 0.

Proof sketch. (See Appendix C.1 of the full version [23] for the full proof.)
⇐= : For each collision-consistent pair (I, J), where I := [i1, . . . , ik], we show that

Pr(isResp(f, I, J)) = Pr(isResp(stat(x), I, J)) =
∏k

t=1 xit
.

=⇒ : ∀i, j ∈ [1..n], Pr(f (I,J)(∅) = i) = Pr(isResp(f, I + [i], J + [j]))/ Pr(isResp(f, I, J)).
Replace f by stat(x) (since they’re equivalent) and simplify to get Pr(f (I,J)(∅) = i) = xi. ◀

Indeed, for any stationary strategy, it’s possible to construct a different equivalent strategy.
This rules out uniqueness of Nash equilibrium. However, we can still hope to get uniqueness
up to equivalence. We found this to be a very difficult problem, and could only resolve it for
RUC games of the form (A, A) (i.e., zero-sum RUC games), where A is irreducible. For such
games, we show that all Nash equilibria are equivalent.

▶ Theorem 41. Let ρ be the Perron root of an irreducible matrix A and x∗ and y∗ be the
left and right Perron vectors of A, respectively. Then for any Nash equilibrium (f∗, g∗) of
the RUC game (A, A), f∗ is equivalent to stat(x∗) and g∗ is equivalent to stat(y∗).

Proof sketch. (See Appendix C.3 of the full version [23] for the full proof.)
We first use Proposition 7 to show that (f∗, y∗) and (x∗, g∗) are also NE. If f∗(∅) is not

distributed as x∗, then in the NE (f∗, y∗), we show that the min player can decrease her cost
by changing her first action’s distribution. This contradicts the fact that (f∗, y∗) is an NE,
and hence, proves that f∗(∅) ∼ x∗. We similarly prove that g∗(∅) ∼ y∗.

Next, we show that for any (I, J) such that collisions(I, J) = 0, (f∗(I,J), g∗(J,I)) is also
an NE, otherwise the min player can gain by deviating in the NE (f∗, y∗), or the max player
can gain by deviating in the NE (x∗, g∗).

Combining the above results tells us that f∗(I,J)(∅) ∼ x∗ and g∗(J,I)(∅) ∼ y∗ for all (I, J)
such that collisions(I, J) = 0, which fulfills the condition of equivalence in Lemma 40. ◀

5 Discussion

In this work, we initiated the study of two-player RUC games: games that are repeated until
collision. RUC games are related to other well-known repeated games, like pursuit-evasion
games, hide-and-seek games, and stochastic games. They also generalize the popular game
of hand cricket, and in Appendix B of the full version [23], we discuss its popular variants.
Our main result showed the existence of Nash equilibria in RUC games when the players’
payoff matrices are irreducible. We studied two other interesting properties: stationarity and
uniqueness. We proved there always exists a Nash equilibrium where players use stationary
strategies, and for zero-sum RUC games, all Nash equilibria are essentially equivalent, that
is, they cannot be distinguished by observing the players’ actions.

In Appendix D of the full version [23], we explore a variant of RUC games where instead
of ending the game on the first collision, we end it on the wth collision, for some w ∈ Z≥0.

FSTTCS 2023



18:16 Two-Player Matrix Games Repeated Until Collision

Our work opens the way for several interesting questions. We can naturally generalize the
definition of a collision to include a larger set of colliding actions, encoded via a collision matrix,
and investigate the existence of Nash equilibria. Lastly, our result showing uniqueness up to
equivalence of Nash equilibria applies only to zero-sum RUC games; showing (non-)uniqueness
for general RUC games is another open question.
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