
Monotonicity Characterizations of Regular
Languages
Yoav Feinstein #

School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel

Orna Kupferman #

School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel

Abstract
Each language L ⊆ Σ∗ induces an infinite sequence {P r(L, n)}∞

n=1, where for all n ≥ 1, the value
P r(L, n) ∈ [0, 1] is the probability of a word of length n to be in L, assuming a uniform distribution
on the letters in Σ. Previous studies of {P r(L, n)}∞

n=1 for a regular language L, concerned zero-one
laws, density, and accumulation points. We study monotonicity of {P r(L, n)}∞

n=1, possibly in the
limit. We show that monotonicity may depend on the distribution of letters, study how operations
on languages affect monotonicity, and characterize classes of languages for which the sequence is
monotonic. We extend the study to languages L of infinite words, where we study the probability
of lasso-shaped words to be in L and consider two definitions for P r(L, n). The first refers to the
probability of prefixes of length n to be extended to words in L, and the second to the probability of
word w of length n to be such that wω is in L. Thus, in the second definition, monotonicity depends
not only on the length of w, but also on the words being periodic.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Regular Languages, Probability, Monotonicity, Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.26

Funding Supported by the Israel Science Foundation, Grant 2357/19, and by the European Research
Council, Advanced Grant ADVANSYNT.

1 Introduction

Consider an alphabet Σ, and assume that letters in Σ are drawn uniformly at random.
The probability of a random word of length n to be in a given language L ⊆ Σ∗ is then
Pr(L, n) = |{w∈Σn|w∈L}|

|Σn| . Thus, each language L induces an infinite sequence {Pr(L, n)}∞
n=1

of values in [0, 1]. The sequence describes how the length of words influences the probability
of their membership in the language.

Several studies in finite-model theory refer to the asymptotic behavior of models satisfying
a given property. The most known studies in this direction concern zero-one laws for different
specification formalisms. For example, a zero-one law for first-order sentences states that
for every property ψ expressible in first-order logic, the probability of finite structures that
are drawn uniformly at random to satisfy ψ tends to 0 or 1 when the size of the structure
tends to ∞ [10, 8]. For regular languages, an analogue zero-one law would state that the
sequence Pr(L, n) tends to 0 or 1. It is easy to see that regular languages, even unary ones,
do not respect a zero-one law. For example, the language L = (aa)∗ over Σ = {a} contains
exactly all words of even length, and so {Pr(L, n)}∞

n=1 alternates between 0 and 1. In [19],
Sin’ya characterized regular languages whose asymptotic probability converges to 0 or 1, and
described a linear-time algorithm for deciding whether the language of a given deterministic
automaton has a zero-one behavior.

Another study of the asymptotic behavior of {Pr(L, n)}∞
n=1 concerns accumulation points

of the sequence, namely points to which a subsequence converges to. As shown in [2, 18],
when L is regular, there are only finitely many such points, and they are all rational. The

© Yoav Feinstein and Orna Kupferman;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 26; pp. 26:1–26:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yoav.feinstein@mail.huji.ac.il
mailto:orna@cs.huji.ac.il
https://orcid.org/0000-0003-4699-6117
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Monotonicity Characterizations of Regular Languages

above works also study the density of L, which is the limit of {Pr(L, n)}∞
n=1. A Markov-

chain based approach to reasoning about the density of a regular language is presented
in [4], which describes a cubic algorithm for calculating the density (or determine that one
does not exist) of a language given by a deterministic automaton. Finally, the limit of the
sequence 1

n

∑
i∈{1,...,n} Pr(L, i), is studied in [3], and its convergence is related to that of

{Pr(L, n)}∞
n=1.

In this paper we study the monotonicity of {Pr(L, n)}∞
n=1. We say that L is eventually

monotonic if there is m ≥ 1 such that for all n ≥ m, we have that Pr(L, n+ 1) ≥ Pr(L, n)
(monotonically non-decreasing) or for all n ≥ m, we have that Pr(L, n + 1) ≤ Pr(L, n)
(monotonically non-increasing). When m = 1, the sequence is monotonic, and when the
probability is strictly increased or decreased, we say that the sequence is monotonically
increasing or monotonically decreasing. Let us consider again the language L = (aa)∗, yet
assume it is defined over the alphabet Σ = {a, b}. Now, {Pr(L, n)}∞

n=1 does tend to 0.
Indeed, Pr(L, n) = 1

2n for even n’s, and is 0 for odd n’s. On the other hand, {Pr(L, n)}∞
n=1

is never monotonic, as for every n ≥ 1, we have that Pr(L, 2n) > Pr(L, 2n + 1) yet
Pr(L, 2n+ 1) < Pr(L, 2n+ 2). Thus, a language L may have a zero-one behavior and not be
eventually monotonic. Implication in the other direction does not hold either. For example,
the language L = b · (a+b)∗ +a∗ has Pr(L, n) = 1

2 + 1
2n . Thus, L is monotonically decreasing,

yet it tends to 1
2 , and does not have a zero-one behavior.

We start with some theoretical properties of monotonicity of regular languages. Recall
that we define Pr(L, n) with respect to a uniform distribution on the alphabet. We show that
the probability according to which letters are drawn may actually change the monotonicity
characteristic of languages, even in the limit. This is in contrast with zero-one laws for regular
languages, which are independent of the distribution (as long as all letters have a positive
probability). We study the sensitivity of monotonicity to Boolean operations. It is easy
to come up with languages with dual monotonicity whose union and intersections are not
monotonic. We show that the union and intersection of languages that are both increasing
or both decreasing need not be monotonic, even eventually. We then consider the case of
unary languages, thus when Σ = {a}. There, Pr(L, n) ∈ {0, 1}, and it is easy to characterize
monotonic languages. We continue and point to positive cases, namely classes of monotonic
languages. For example, we show that {Pr(L, n)}∞

n=1 is eventually monotonic when L is
recognizable by a deterministic weak automaton of depth or width 1. The characterization
is tight, in the sense that removing one of these limitations, one may end up in a language
that is never monotonic. A different tight characterization we give is of 2-state counter-free
deterministic automata. Our analysis is based on results from linear algebra regarding the
stochastic matrix induced by the automata, and it is valid also with respect to non-uniform
distributions of the alphabet.

Moving to languages of infinite words, we consider lasso-shaped words, and study three
sequences. The first two, denoted {Pr∃(L, n)}∞

n=1 and {Pr∀(L, n)}∞
n=1, refer to the probabil-

ity of prefixes of length n to be extendable, by some or all suffixes, respectively, to words in L.
We show that Pr∃(L, n) and Pr∀(L, n) are related to the probability of words of length n to
be good prefixes for L and bad prefixes for the complement of L, respectively, implying the
monotonicity of the sequences. The third sequence is {Prω(L, n)}∞

n=1, where Prω(L, n) is
the probability of a word w of length n to be such that wω is in L. Thus, here, monotonicity
depends also on the words being periodic. For example, while it is easy to see that the
language of finite prefixes of (aab)∗ is monotonically decreasing, with Pr(L, n) = 1

2n , we have
that Prω((aab)ω, n) is never monotonic, as it is 0 for n’s that are not multiplications of 3.

Y. Feinstein and O. Kupferman 26:3

We describe a construction that transforms a deterministic parity automaton A to a
deterministic automaton for all finite words u such that uω ∈ L(A). The construction is
exponential, and we prove a matching lower bound. Using the construction, we are able
to lift some of the positive results about languages of finite words to the setting of infinite
words. We also discuss the characterizations when the languages are given by formulas in
LTL (or LTLf , for the case of finite words) [15, 9].

Beyond the theoretical interest, properties of {Pr(L, n)}∞
n=1 are useful when reasoning

about L. We give here some examples. In the context of decision problems about regular
languages, researchers suggested approximated algorithms that refer to asymptotic behavior.
For example, [14] studies almost equivalence of regular languages, where two languages
L1, L2 ⊆ Σ∗ are almost equivalent if Pr(L1△L2, n) tends to 0, where L1△L2 denotes the
symmetric difference between L1 and L2. General monotonicity properties of L1△L2 indicate
how L1 and L2 differ from each other in the limit. Similar reasoning can be made about
intersection of languages, their union, and more.

Our study of monotonicity for languages of infinite words is motivated by the need to
sort results of vacuity checks in model checking. Vacuity detection is a method for finding
errors in the model-checking process when the specification is found to hold in the model.
Most vacuity algorithms are based on checking the effect of applying mutations on the
specification [1]. It has been recognized that while in many cases vacuity results are valued
as highly informative, there are also cases in which the results are viewed as meaningless by
users [17, 5]. In [7], the authors suggested to rank vacuity results based on the probability
of the mutated specification to hold in a random computation. For example, two natural
mutations of the specification G(req → F ready) are G(¬req) and GF ready. It is agreed
that satisfaction of the first mutation is more alarming than satisfaction of the second. The
methodology explains this by the probability of G(¬req) to hold in a random computation
being 0, whereas the probability of GF ready being 1. The above definition assumes an infinite
computation. As discussed in [7], in the context of model checking, it is more relevant to refer
to the probability of the mutation to hold in computations in finite-state systems. Specifically,
it is suggested in [7] to study Pr(L, k, l), which is the probability that a lasso-shaped word
with a prefix of length k and a loop of length l, belongs to L. Our study of lasso-shaped
words does this for the special cases l = ∞ or k = 0. In particular, our study of Prω(L, l)
addresses challenges that concern the periodic nature of lasso-shaped words and shows that
the periodicity of lasso-shaped words affects their probability to be in L in ways that are
orthogonal and not not less significant than their length.

2 Preliminaries

2.1 Automata
An alphabet Σ is a finite set of letters. A word over Σ is a finite or infinite sequence w =
σ1, σ2, σ3, · · · of letters from Σ. We use |w| to denote the length of w, with |w| = ∞ for an
infinite word w. We use Σ∗ and Σω to denote the set of all finite and infinite words over
Σ, respectively. A language is a set of words. For a language L ⊆ Σ∗, we use comp(L) to
denote the language complementing L, thus comp(L) = Σ∗\L.

A nondeterministic automaton is A = ⟨Σ, Q, δ,Q0, α⟩, where Σ is a finite input alphabet,
Q is a finite set of states, δ : Q× Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial
states, and α ⊆ Q is a set of accepting states. We extend δ to finite words in the expected
way. Thus, δ∗(q, u) is the state A reaches when it reads the word u ∈ Σ∗ from some state
q ∈ Q. Formally, δ∗ : Q × Σ∗ → Q is such that for every q ∈ Q, we have that δ∗(q, ϵ) = q

and for a finite word u ∈ Σ∗ and letter σ ∈ Σ, we have that δ∗(q, u · σ) = δ(δ∗(q, u), σ).

FSTTCS 2023

26:4 Monotonicity Characterizations of Regular Languages

A run of A on a word w is the function r : {0 ≤ i ≤ |w|} → Q, such that r(0) ∈ Q0, and
for all i ≥ 0, we have that r(i+ 1) ∈ δ(r(i), σi+1). If |Q0| = 1, and for all q ∈ Q and σ ∈ Σ,
it holds that |δ(q, σ)| = 1, then A has a single run on w, and we say that A is deterministic.
We sometimes refer to a run also as a sequence of states; that is, r = r(0), r(1), . . . ∈ Q|w|+1.

When A runs on finite words, the run r is finite, and it is accepting iff it ends in an
accepting state, thus r(|w|) ∈ α. When A runs on infinite words, acceptance depends on
the set inf(r), of the states that r visits infinitely often. Formally inf(r) = {q ∈ Q : for
infinitely many i ∈ N, we have that r(i) = q}. As Q is finite, the set inf(r) is guaranteed
not to be empty. In Büchi automata, the run r is accepting iff r visits the set of accepting
states infinitely often, thus inf(r) ∩ α ̸= ∅. Otherwise, r is rejecting. In parity automata, the
acceptance condition is α : Q → {1, . . . , k}, and a run r is accepting iff the minimal color in
{1, . . . , k} that r visits infinitely often is even. The automaton A accepts a word w if there
exists an accepting run r of A on w. The language of A, denoted L(A), is the set of words
that A accepts. We also say that A recognizes L(A). We define the size of A, denoted |A|,
as the number of states that A has. A deterministic automaton A on finite words is minimal
if there is no equivalent automaton, namely one that accepts the same language, of a smaller
size.

We use NFW and DFW to denote nondeterministic and deterministic automata on finite
words, respectively, and similarly for NBW, DBW, NPW, and DPW, denoting Büchi and
parity automata.

An automaton A = ⟨Σ, Q, q0, δ, α⟩ is weak if there exists a partition of Q into sets
Q1, Q2, . . . , Qk such that for all 1 ≤ i ≤ k, either Qi ⊆ α, in which case we say that Qi is
accepting, or Qi ∩ α = ∅, in which case we say that Qi is rejecting. In addition, there is a
partial order ≤ on the sets such that transitions in δ lead to states of the same or of lower
sets. Formally, for all states q, q′ ∈ Q, if q′ ∈ δ(q, σ), for some letter σ ∈ Σ, then the sets
Qi and Qj for which q ∈ Qi and q′ ∈ Qj satisfy Qj ≤ Qi. Equivalently, the partition into
strongly connected components of the graph induced by A is such that each component is
either contained in α or disjoint from α. For j ∈ N, we say that A is weak[j] if A is weak
and the largest set Qi in the partition of Q is of size j. We refer to j as the width of A.
Describing classes of weak[j] automata, we add [j] to the acronym. For example an NFW[1]
is a weak[1] NFW, namely an NFW in which all cycles are self loops. We sometimes refer
also to the depth of A, which is the maximal number of alternations between accepting and
rejecting sets that a run may have.

A regular language L is counter-free (CF, for short) if there is n ≥ 1 such that for every
m ≥ n and v, w, x ∈ Σ∗, we have that vwnx ∈ L iff vwmx ∈ L. For example, L1 = (ab)∗ is
CF, while L2 = (aa)∗ is not CF. An NFW A is CF if L(A) is CF. A DFW A is permutation-
free (PF, for short) if there does not exist a non-trivial permutation between its states. That
is, there does not exist a word w ∈ Σ∗ and a set {q1, q2, . . . , ql}, with l ≥ 2 of different states
in A such that δ∗(qi, w) = q(i mod l)+1 for all 1 ≤ i ≤ l. A regular language is PF if its
minimal automaton is PF. By [13] (Theorem 5.1), a regular language is CF iff its minimal
DFW is PF.

A language L ⊆ Σ∗ is a safety language if every word not in L has a bad prefix. Formally,
if w ̸∈ L, then w has a prefix x ∈ Σ∗ such that for every y ∈ Σ∗, we have that x · y ̸∈ L.
For example, if Σ = {a, b}, then the languages L1 = a∗ is safety. Indeed, if w ̸∈ L1, then
w has a prefix x ∈ a∗ · b, and x · y ̸∈ L1 for all y ∈ Σ∗. On the other hand, the language
L2 = (ab)∗ is not safety, as, for example, the word aba is not in L3, yet every prefix of it can
be extended to a word in L3. A language L ⊆ Σ∗ is a co-safety language if comp(L) is safety.
Equivalently, every word w ∈ L has a good prefix, namely a prefix x such that x · y ∈ L for

Y. Feinstein and O. Kupferman 26:5

all y ∈ Σ∗. Safety and co-safety languages can be recognized by weak automata of depth 1
[20, 12]. Indeed, in automata for safety languages, all runs start in accepting sets and move
to a rejecting sink once a bad prefix is read. Dually, for co-safety languages, run start in
rejecting sets and may move to an accepting sink.

The definitions of safety and co-safety languages apply also for languages L ⊆ Σω. Here,
a bad prefix is x ∈ Σ∗ such that for every y ∈ Σω, we have that x · y ̸∈ L. Note that while
the language L2 = (ab)∗ of finite words is not safety, the language L′

2 = (ab)ω of infinite
words is safety. Indeed, w /∈ L′

2 iff w has a prefix ending with aa or bb, which is a bad prefix.

2.2 Monotonicity Characterizations of Regular Languages
Let {an}∞

n=1 = a1, a2, a3, . . . be some sequence of real numbers in [0, 1]. For convenience, we
sometimes write {an} = {an}∞

n=1 for short. We say that the sequence {an}∞
n=1 is:

monotonically non-decreasing (MND) if for all n ≥ 0, we have that an+1 ≥ an. If for all
n ≥ 0, we have that an+1 > an, then the sequence is monotonically increasing (MI).
monotonically non-increasing (MNI) if for all n ≥ 0, we have that an+1 ≤ an. If for all
n ≥ 0, we have that an+1 < an, then the sequence is monotonically decreasing (MD).

We say that the sequence {an} is monotonic (M) if {an} is MNI or MND. Since we care
about limit behavior, we have particular interest in sequences that are not immediately
monotonic but rather monotonic from a certain index. For γ ∈ {MND,MI,MNI,MD,M},
a sequence {an} is eventually γ, if there exists k ≥ 0, such that {an}∞

n=k is γ. If {an} is
not EM, we say that it is never-monotonic (NM). If the sequence {an} is not EM, we say
that it is never-monotonic (NM). We refer to γ ∈ {MND, MI ,MNI, MD, M, EMND, EMI,
EMNI, EMD, EM, NM} as the monotonicity characterization of languages. We use γ̃ is
the monotonicity characterization dual to γ. Thus, {an}∞

n=1 is γ iff {1 − an}∞
n=1 is γ̃. For

example, M̃I = MD.
Consider an alphabet Σ. We assume that letters in Σ are drawn uniformly at random (see

Section 3.1 for an extension to arbitrary distributions). Accordingly, the probability of each
letter to be drawn is 1

|Σ| and for a given length n ≥ 1, the probability of a word of length
n to be drawn is 1

|Σn| . Consider a language L ⊆ Σ∗. The probability of a random word of
length n to be in L is then Pr(L, n) = |{w∈Σn|w∈L}|

|Σn| . We characterize regular languages by
the way the length of words influences membership in the language. For a language L ⊆ Σ∗

and a monotonicity characterization γ, we say that L is γ iff the sequence {Pr(L, n)}∞
n=1 is

γ. Likewise, an automaton A is γ iff L(A) is γ. Note that we start with n = 1 and ignore
the membership of ϵ in L.

▶ Example 1. Consider the following languages over Σ = {a, b}.
The language L1 = a∗ induces the sequence {Pr(L1, n) = 1

2n }, and is therefore MD.
Its complement language L2 = Σ∗ · b · Σ∗ induces the sequence {Pr(L2, n) = 1 − 1

2n }, and
is therefore MI.
Let L3 = (ϵ+ (Σ∗ · a)) · (bb)∗. Thus, L3 contains exactly all words in which the number of
b’s after the last occurrence of a is even. The first elements in {Pr(L3, n)} are described
in the table below

n 1 2 3 4
Pr(L3, n) 1

2
3
4

5
8

11
16

For example, when n = 3, then out of 8 words of length 3, only the 5 words aaa, baa, bba,
aba, and abb are in L3. Although we can already determine that {Pr(L3, n)} is not M, it
might be EM. ⌟

FSTTCS 2023

26:6 Monotonicity Characterizations of Regular Languages

▶ Example 2. Let S1, S2 ⊂ Σ be a partition of an alphabet Σ into two nonempty sets.
Consider the language Lonce = S∗

1 · S2 · S∗
1 . Thus, a word w is in L iff it contains exactly

one occurrence of a letter in S2. On the one hand, longer words are more likely to include a
letter in S2. On the other hand, longer words are more likely to include more than one such
letter. Formally, if p = |S2|

|Σ| is the probability of a random letter to be in S2, then it is not
hard to show that Pr(Lonce, n) = n · p · (1 − p)n−1. Thus, Lonce is EM, yet monotonicity
only starts when n ≥ 1

− ln (1−p) . ⌟

3 Theoretical Properties

In this section we study some theoretical properties of monotonicity for regular languages.
Recall that we define Pr(L, n) as the probability of a word of length n to be in L, assuming
that letters are drawn uniformly at random. In Section 3.1, we show that the probability
according to which letters are drawn may actually change the monotonicity characteristic of
languages, even in the limit. In Section 3.2, we study the sensitivity of the monotonicity to
operations like complementation, union, and intersection. Finally, in Section 3.3, we consider
the case of unary languages, thus when Σ = {a} and Pr(L, n) ∈ {0, 1} for all n ≥ 1.

3.1 On the choice of a uniform distribution
Some properties, like a zero-one behavior of a language, are independent of the distribution
of the letters in the alphabet [19]. In Theorem 3, we show that for monotonicity, the
distribution may actually affect the characterization. Moreover, the distribution may not
only turn monotonic languages into be eventually monotonic ones or turn strict monotonicity
(that is, MI or MD) into non-strict one (that is, MND or MNI), but may turn a strictly
monotonic language into one that is never monotonic:

▶ Theorem 3. Let Σ = {a, b}. There is a language L such that L is MD when the letters in
Σ are uniformly distributed and is NM in all distributions f : Σ → [0, 1] with f2(a) > f(b).

Proof. Consider the language L = aa(aa)∗ + b(aa)∗. Note that all the words in L are of the
form σ · am, with σ inducing the required parity of m: if σ = a, then m has to be odd, and if
σ = b, then m has to even. Thus, for every length n ≥ 1, there is exactly one word of length
n in L. If n is even, then it is the word an, and if n is odd, then it is the word b · an−1.

Accordingly, it is not hard to see that under a uniform distribution, we have that
Pr(L, n) = 1

2n , and so L is MD. On the other hand, consider a distribution f : Σ → [0, 1] with
f(a) = pa and f(b) = pb. Then, Prf (L, n) = pn

a when n is even, and Prf (L, n) = pb · pn−1
a

when n is odd. Note that when n is odd, then Prf (L, n + 1) = pb · Prf (L, n), thus
Prf (L, n + 1) < Prf (L, n). In addition, Prf (L, n + 2) = p2

a · Prf (L, n). Thus, if p2
a > pb,

then Prf (L, n+ 2) > Prf (L, n+ 1). Thus, when p2
a > pb, the sequence {Prf (L, n)}∞

n=1 is
NM. For example, when pa = 3

4 and f(b) = 1
4 , we get that Prf (L, n) = 3n(2+(−1)n)

4n·3 . ◀

Theorem 3 may question the robustness of our results. As we argue in Remark 20,
however, all the results in the paper apply to arbitrary distributions.

3.2 Monotonicity characterization and Boolean operations
In this section we study whether the monotonicity characterization of languages is preserved
under complementation, union, and intersection.

We start with complementation. Since for every language L, and for every n ≥ 1, we have
that Pr(comp(L), n) = 1 − Pr(L, n), dualization follows immediately from the definitions:

Y. Feinstein and O. Kupferman 26:7

▶ Theorem 4. For every language L ⊆ Σ∗ and monotonicity characterization γ, we have
that L is γ iff comp(L) is γ̃.

We continue to union and intersection. It is easy to come up with languages with dual
monotonicity characterization whose union and intersections are not monotonic. We show
that, surprisingly, also the union and intersection of languages that are both monotonically
increasing or both monotonically decreasing, need not be monotonic, even in the limit.

▶ Theorem 5. The intersection and union of MD (or MI) languages may be NM.

Proof. We prove the result for MD languages. By considering the complement languages,
one can get proofs for MI languages.

We start with intersection. Consider the languages L1 = a∗ and L2 = (aa)∗ + b(bb)∗. It
is not hard to show that for every n ≥ 0, we have that Pr(L1, n) = Pr(L2, n) = 1

2n . Thus,
both languages are MD. Let L∩ = L1 ∩ L2. Note that L∩ = (aa)∗. Accordingly, Pr(L∩, n)
is 0 for odd n’s and is 1

2n for even n’s. Hence, L∩ is NM.
We continue with union. Consider the languages L3 = aΣ∗ + b∗ and L4 = aΣ(ΣΣ)∗ +

(bb)∗ + b(ΣΣ)∗ + a(aa)∗. It is not hard to see that for every n ≥ 1, we have that, Pr(L3, n) =
Pr(L4, n) = 1

2 + 1
2n . Thus, both languages are MD. Let L∪ = L3 ∪ L4. Note that

L∪ = aΣ∗ + (bb)∗ + Σ(ΣΣ)∗. Thus, Pr(L∪, n) is 1 for odd n’s and is 1
2 + 1

2n for even n’s.
Hence, L∪ is NM. ◀

3.3 The case of unary languages
In this section we examine languages over a unary alphabet, thus when Σ = {a}. Note
that then, each language L ⊆ a∗ corresponds to a set of integers, namely all n ≥ 0 such
that an ∈ L. Accordingly, Pr(L, n) = 1 if an ∈ L, and Pr(L, n) = 0 if an ̸∈ L. It follows
that a unary language cannot be MI or MD, and that MND and MNI unary languages are
trivial. Indeed, only L = a∗ and L = ∅ have Pr(L, n) = 1 and Pr(L, n) = 0 for all n ≥ 0,
respectively. Thus, a unary language L ⊆ a∗ can have one of the following two monotonicity
characteristics.

EM, which holds if L is almost trivial, thus L or comp(L) are finite. Formally, there is
m ≥ 0 such that either ak ∈ L for all k ≥ m, or ak ̸∈ L for all k ≥ m.
NM if for all k ≥ 0, we have m, l ≥ k with am ∈ L and al ̸∈ L.

Note that the definitions coincide with these presented in Section 2.2, simplified to the
case Pr(L, n) is in {0, 1} for all n ≥ 1.

▶ Theorem 6. Unary NFW[1]s are EM.

Proof. Consider an NFW[1] A = ⟨{a}, Q, δ,Q0, α⟩ with m states. We distinguish between
two cases. First, if A has a state q ∈ α that is reachable from Q0 by a path that includes a
state with a self loop (possibly q itself has a self loop), then {ak : k ≥ m} ⊆ L(A), and so
{Pr(L(A), n)}∞

n=1 is eventually always 1. Otherwise, all the states in α are reachable only by
paths that do not include states with self loops. Thus, |L(A)| ≤ |α|, and so {Pr(L(A), n)}∞

n=1
is eventually always 0. ◀

Note that the graph induced by a unary DFW A that accepts an infinite language must
be lasso-shaped. Also, A is EM iff all the states in the cycle of the lasso are accepting or
all are not accepting. Accordingly, arbitrary unary DFWs may be NM, yet all weak unary
DFWs are EM. In the nondeterministic setting, the characterization in Theorem 6 is tight,
and even unary NFW[2]s may be NM:

FSTTCS 2023

26:8 Monotonicity Characterizations of Regular Languages

▶ Theorem 7. Unary NFW[2]s may be NM.

Proof. Consider the NFW[2] appearing in Figure 1. It is not hard to see that its language is
(aa)+, which is NM. ◀

q0 q1 q2 q3
a

a

a a

a

Figure 1 A unary NFW[2] whose language is (aa)+.

4 An Algebraic Approach

In this section we relate monotonicity characterization with properties of the stochastic
matrix that describes the behavior of a given DFW. We first need some definitions.

A Markov chain is a tuple MA = ⟨Q, τ⟩, where Q is a set of states and τ : Q×Q → [0, 1]
is a probabilistic transition function: for q, q′ ∈ Q, the value τ(q, q′) is the probability of
moving from q to q′. Since τ describes a distribution, then for every q ∈ Q, we have that∑

s∈Q τ(q, s) = 1.
Each DFW A = ⟨Σ, Q, δ, q0, F ⟩ induces a Markov chain MA = ⟨Q, τ⟩, where for q, q′ ∈ Q,

we have that τ(q, q′) is the probability of a run that visits state q to move to state q′

when it reads the next letter. Thus, assuming a uniform distribution on Σ, we have that
τ(q, q′) = |{σ:δ(q,σ)=q′}

|Σ| .

▶ Example 8. Consider the DFW A appearing in Figure 2. Its induced Markov chain MA
appears to its right.

A :

q0 q1

b

a, b

a

MA :

q0 q1

1

2

1

1

2

PA =

(
1
2

1
2

1 0

)

Figure 2 A DFW A, its induced Markov chain MA, and its stochastic matrix PA.

Note that A recognizes the language L3 discussed in Example 1, namely the language
of all words that have an even number of b’s after the last occurrence of a. In Example 1,
we described the first elements in {Pr(L3, n)}. In particular, we calculated Pr(L3, 3) by
counting the number of words of length 3 that are in L3. We now show how to calculate
Pr(L3, 3) by examining the Markov chain MA. A word of length 3 is accepted by A only if
its run on A is q0q0q0q0, which happens with probability 1

2 · 1
2 · 1

2 , or q0q1q0q0, which happens
with probability 1

2 · 1 · 1
2 , or q0q0q1q0, which happens with probability 1

2 · 1
2 · 1. Overall, we

have that Pr(L(A), 3) = 5
8 . ⌟

The stochastic matrix of a DFW A, denoted PA, describes the transition function
τ of its Markov chain MA. Formally, we assume some order on the states in Q, thus
Q = {q1, q2, . . . , qn}, and PA is an n×n matrix with elements in [0, 1], where for 1 ≤ i, j ≤ m

we have that PAi,j
= τ(qi, qj). Given a DFW A and states qi, qj ∈ Q, the probability of a

run on a word of length n that starts in qi to end in the state qj is (Pn
A)i,j . Let xn

i denote
the probability of a word of length n to end in state qi. If the initial state of A is q1, then
xn

i = (Pm
A)1,i.

Y. Feinstein and O. Kupferman 26:9

▶ Example 9. Back to the DFW A from Figure 2. The matrix PA appears on the right of
the figure. Recall that xn

0 and xn
0 denote the probability of a word to end on the states q0

and q1, respectively. By diagonalizing PA (see details in Appendix A), we can calculate:

(xn
0 , x

n
1) = (1, 0) · Pn

A =
(2 + (−1

2)n

3 ,
1 − (−1

2)n

3

)
.

Since α = {q0}, we have that Pr(L(A), n) = xn
0 = 2+(−1

2)n

3 . Note that Pr(L(A), n) >
Pr(L(A), n− 1), when n is even, and Pr(L(A), n) < Pr(L(A), n− 1), when n is odd. Hence,
L(A) is NM. ⌟

An eigenvalue of matrix A is a scalar, denoted λi, such that there exists a non-zero vector
v for which Av = λiv. In Appendix A, we describe how to reason about (Pm

A)1,i using known
results from linear algebra. Specifically, we prove the following lemma.

▶ Lemma 10. Consider a stochastic matrix P ∈ Rd×d and a set S = {(i1, j1), · · · , (it, jt)}
of t pairs of indices in P . If all the eigenvalues of P are real and non-negative, then the
sequence {

∑
(i′,j′)∈S P

n
i′,j′}∞

n=1 is EM.

Lemma 10 is useful for reasoning about the monotonicity of DFWs.

▶ Theorem 11. Let A be some DFW. If PA has only real and non-negative eigenvalues,
then L(A) is EM.

Proof. Let ql1 , ql2 , . . . , qlt
be the accepting states of A, and let qs be its initial state. Let

S = {(s, l1), (s, l2), . . . , (s, lt)}. As A is deterministic, then Pr(L(A), n) =
∑

(i′,j′)∈S P
n
i′,j′ .

By Lemma 10, we thus have that {Pr(L, n)} is EM. ◀

5 Classes of Monotonic Languages

In this section we point to three classes of monotonic languages. The first two refer to weak
automata and the third to permutation-free automata. The classes are tight, in the sense
that if we remove some limitations in their definition, we end up in classes that are never
monotonic.

5.1 Weak automata – width
We start with the width of weak automata and show that if the sets in the partition that
witnesses the weakness of the automaton are singletons, then its language is EM, and that
this sufficient condition is tight.

▶ Theorem 12. DFW[1]s are EM.

Proof. Let A be some DFW[1] and let {q0} ≤ {q1} ≤ . . . ≤ {qm−1} be the partition of
the states of A into sets that witness its weakness. Then, for every i < j, we have that
τ(qi, qj) = 0, implying that PA is an upper triangular matrix, and so its eigenvalues are on
its diagonal. Hence, as the elements of PA are real and non-negative, so are it eigenvalues.
Thus, by Theorem 11, we have that A is EM. ◀

▶ Example 13. Recall the language Lonce from Example 2. Figure 3 describes a DFW[1] for
Lonce, which immediately implies it is EM. ⌟

FSTTCS 2023

26:10 Monotonicity Characterizations of Regular Languages

q0 q1 q2
S2 S2

S1 S1 Σ

Figure 3 A DFW[1] for Lonce.

We now show that Theorem 12 is tight, in the sense we cannot remove any of the
limitations imposed by the DFW[1] restrictions. Thus, DFW[2]s and NFW[1]s need not
be monotonic. Note that this is in contrast with the unary case, where NFW[1]s are EM
(Theorem 6).

▶ Theorem 14. DFW[2]s may be NM.

Proof. Consider the DFW[2] D that appears in Figure 4 (left). It is not hard to prove that
L(D) = a(ba)∗a. Thus, D only accept words of even length. Moreover, while the probability
of words of odd length to be accepted is 0, the probability is positive for words of even length.
Specifically, Pr(L(D), n) = (−1)n+1

2n+1 , which is NM. ◀

▶ Theorem 15. NFW[1]s may be NM.

Proof. Let Σ = {a, b} and consider the NFW A appearing in Figure 4 (right). It is not hard
to see that L(A) = comp((ab)∗). Indeed, comp((ab)∗) = Σ∗ · a+ b · Σ∗ + Σ∗ · (aa+ bb) · Σ∗.
Since (ab)∗ is infinite and contains only words of even length, it is NM. Hence, by Theorem 4,
so is L(A). ◀

D :

q0 q1 q2 q3
a

b

b

a a, b

a, b

A :

q0 q1

q3

q2

q4
a

a

b

a

b

a

b

a, b a, b

Figure 4 A DFW[2] recognizing a(ba)∗a and an NFW[1] recognizing comp((ab)∗).

5.2 Weak automata – depth
We continue to the depth of weak automata, namely the bound on the number of alternations
between accepting and rejecting sets in the partition that witnesses the weakness. Weak
automata of depth 1 recognize safety and co-safety languages [20, 12]. Intuitively, the longer
a word is, the more likely it is for a bad thing to do happen. Formally, we have the following.

▶ Theorem 16. All safety (co-safety) languages of finite words are MNI (MND, respectively).

Proof. We prove that all co-safety languages are MND. The result for safety follows from
Theorem 4. For each n ≥ 0, we calculate the number #(L, n) of words in L ∩ Σn. First
#(L, 0) ∈ {0, 1}, according to the membership of ϵ in L. Then, counting words in L ∩ Σn+1,
observe that since L is co-safety, then each word in L∩ Σn contributes to L∩ Σn+1 all its |Σ|
extensions by one letter. Thus, #(L, n+ 1) ≥ #(L, n) · |Σ|. Since #(L, n) = Pr(L, n) · |Σ|n,
we get that

Pr(L, n+ 1) ≥ Pr(L, n) · |Σ|n · |Σ|
|Σ|n+1 = Pr(L, n). ◀

Y. Feinstein and O. Kupferman 26:11

Recall the DFW[2] D and NFW[1] A that are described in Figure 4. In Theorem 14, we
proved that their languages are NM. As D has depth 2 and A has depth 1, they also serve
for proving the tightness of Theorem 16. Thus, we have the following.

▶ Theorem 17. All weak DFWs of depth 1 are M. On the other hand, there is a weak DFW
of depth 2 and a weak NFW of depth 1 whose languages are NM.

5.3 Permutation-free automata
We conclude with automata that recognize CF languages, and give a tight sufficient condition
also for them.

▶ Theorem 18. 2-state CF DFWs are M.

Proof. In Figure 5, we describe a general 2-state DFW A = ⟨Σ, {q0, q1}, δ, q0, α⟩, with its
stochastic matrix PA. If both q0, q1 are accepting or both are rejecting, then Pr(L(A), n) = 1
or 0 respectively. We assume that exactly one of the states of A is accepting. Let τ(q0, q0) = p0
and τ(q1, q1) = p1, where τ is the transition function of the Markov chain MA. Consider
the stochastic matrix PA of A, shown in Figure 5. The eigenvalues of PA can be calculated
and are λ1 = 1 and λ2 = p0 + p1 − 1 (note that λ2 might be equal to 1 as well). Note that
Pr(L(A), n) = c1 + c2(p0 + p1 − 1)n, for some c1, c2 ∈ R. We show that p0 + p1 − 1 ≥ 0,
implying that A is M.

Assume by way of contradiction that p0 + p1 − 1 < 0. Then (1 − p0) + (1 − p1) > 1.
Therefore, there exists some σ ∈ Σ, such that δ(q0, σ) = q1 and δ(q1, σ) = q0, and so there is
a non-trivial permutation in A. Since only one of the states of A is accepting, it is minimal.
Thus, A is PF, and we have reached a contradiction. ◀

MA :

q0 q1

1− p0

1− p1

p0 p1

PA =

(
p0 1− p0

1− p1 p1

)

Figure 5 A CF DFW A with two states.

▶ Theorem 19. 2-state DFWs, 3-state CF DFWs, and 2-state CF NFWs may be NM.

Proof. First, in Example 9, we saw that the 2-state DFW from Example 8 is NM. For
a 3-state CF DFW, consider the DFW D appearing in Figure 6. It is not hard to prove
that D is PF and that L(D) = comp((ab)∗), which is NM. Now, for a 2-state CF NFW,
consider automaton A appearing to the right of D. Note that L(A) = L(D), Indeed, D can
be obtained by applying the subset construction on A. Thus, A is a 2-state CF NFW whose
language is NM. ◀

D :

s0 s1 s2

a

b

b

a

a, b

A :

q0 q1

a, b

a, b

b a

Figure 6 A 3-state DFW and a 2-state NFW for the PF and NM language comp((ab)∗).

FSTTCS 2023

26:12 Monotonicity Characterizations of Regular Languages

▶ Remark 20. It is not hard to check that all the positive results in this section can be
extended to nonuniform distribution of the letters in the alphabet. Indeed, the proofs
of Theorems 12 and 18 are independent of the uniform distributions, and the proof of
Theorem 16 can be easily adjusted to the general case. ⌟

▶ Remark 21. The logic LTLf is a linear temporal logic that specifies languages of finite
words. By [6], PF DFWs are as expressive as LTLf . In particular, the LTLf formula
p ∧ ((p ∧ X¬p) ∨ (¬p ∧ Xp))U(p ∧ X(p ∧ last)) is satisfied only by computations of even
length, and is similar to the NM DFW[2] from Figure 4. ⌟

6 Infinite Words

For languages of infinite words, we consider lasso-shaped words, thus words of the form vuω,
for some v, u ∈ Σ∗. We study three sequences. The first two refer to the prefix of the lasso,
namely to the probability of prefixes v ∈ Σn to be extendable, by some or all suffixes, to
words in L. The third refers to the loop of the lasso, namely to the probability of a loop
u ∈ Σn to be such that uω ∈ L. We relate the three sequences to sequences induced by
languages of finite words. While this is straightforward for the two sequences that refer to
the prefix, it involves new ideas and constructions for the third sequence, where reasoning
depends not only on the length of the lasso, but also on the words being periodic.

6.1 Monotonicity in the length of the prefix
For a language L ⊆ Σω, let good.pref ∃(L) = {v ∈ Σ∗ | there is u ∈ Σω such that v · u ∈
L} and good.pref ∀(L) = {v ∈ Σ∗ | for all u ∈ Σω we have that v · u ∈ L}. We define
Pr∃(L, n) = |good.pref ∃(L)∩Σn|

|Σn| and Pr∀(L, n) = |good.pref ∀(L)∩Σn|
|Σn| . Thus, {Pr∃(L, n)}∞

n=1

and {Pr∀(L, n)}∞
n=1 describe how the length of words influences their probability to be

extendable to words in L by some or by all suffixes, respectively. Intuitively, the longer a
prefix is, the smaller is the probability to extend it to a word in L by some suffix, yet the
higher is the probability that all its extensions result in a word in L. Formally, we have the
following.

▶ Theorem 22. For every language L ⊆ Σω, we have that {Pr∃(L, n)}∞
n=1 is MNI and

{Pr∀(L, n)}∞
n=1 is MND.

Proof. It is easy to see that good.pref ∃(L) is a safety language. Indeed, if v ∈ Σ∗ cannot
be extended to a word in L, then so do all its extensions. Also, as good.pref ∀(L) =
comp(good.pref ∃(comp(L))), we have that good.pref ∀(L) is a co-safety language.

By definition, Pr∃(L, n) = Pr(good.pref ∃(L), n) and Pr∃(L, n) = Pr(good.pref ∀(L), n).
Thus, the claim follows from Theorem 16. ◀

6.2 Monotonicity in the length of the loop
We continue and study the sequence{Prω(L, n)}∞

n=1. Recall that Prω(L, n) is the probability
of a word u ∈ Σn to be such that uω ∈ L. Formally, Prω(L, n) = |{u∈Σn|uω∈L}|

|Σn| . Thus, here,
in addition to the dependency of membership in L in the length of u, monotonicity may
depend on the periodic nature of words of the form uω.

In order to illustrate this dependency, we start with a simple observation.

▶ Theorem 23. Safety and co-safety languages of infinite words may be NM.

Y. Feinstein and O. Kupferman 26:13

Proof. Consider the safety language L = (ab)ω. Note that for all n ≥ 0, we have that
Prω(L, 2n) > 0, whereas Prω(L, 2n+ 1) = 0. Indeed, for u = (ab)n, we have that uω ∈ L,
whereas for u of an odd length, either u contains aa or bb, or the first and last letters of u
are identical. In both cases, uω ̸∈ L. Dually, comp(L) is a co-safety language, and for all
n ≥ 0 we have that Prω(L, 2n+ 1) = 1, whereas Prω(L, 2n) < 1. ◀

On the other hand, it is not hard to extend the results in Section 3.2 about complement-
ation, union, and intersection, also to languages on infinite words.

▶ Theorem 24. For every language L ⊆ Σω and monotonicity characterization γ, we have
that L is γ iff comp(L) is γ̃. On the other hand, the intersection and union of MD (or MI)
languages of infinite words may be NM.

Proof. The proof for complementation is identical to the one in the case of finite words.
Indeed, also in the case of infinite words, we have that Prω(comp(L), n) = |{u∈Σn|uω ̸∈L}|

|Σn| =
1 − |{u∈Σn|uω∈L}|

|Σn| = 1 − Prω(L, n).
For union and intersection, we prove the result for MD languages over the alphabet

Σ = {a, b, c, d}. We start with intersection. Consider the languages L1 = aω + (ab)ω and
L2 = bω + (ab)ω. Observe that a finite word w ∈ Σ∗ is such that wω ∈ L1 iff w = a∗ or
w = (ab)∗. Therefore, Pr(L1, n) is 1

4n for odd n’s, and is 2
4n for even n’s. Since for every

n ≥ 1, we have that 2
4n > 1

4n+1 and 1
4n > 2

4n+1 , it follows that L1 is MD. A similar argument
implies that L2 is MD. Let L∩ = L1 ∩ L2. Note that L∩ = (ab)ω. Thus, wω ∈ L∩ iff
w = (ab)∗, and so L∩ is NM.

For union, consider the MD languages L3 = aω +(ab)ω +(ac)ω and L4 = aω +(ba)ω +(bc)ω.
Let L∪ = L3 ∪L4. Note that L∪ = aω + (ab)ω + (ac)ω + (ba)ω + (bc)ω. It is not hard to show
that Pr(L∪, n) is 1

4n for odd n’s, and is 5
4n for even n’s. Since Pr(L(A), n) > Pr(L(A), n+1)

for odd n’s, and Pr(L(A), n) < Pr(L(A), n+ 1) for even n’s, we have that L∪ is NM. ◀

We continue and examine CF languages of infinite words. Recall that for finite words, we
showed that every 2-state CF DFW is EM, and that the characterization is tight. By going
over all 2-state NBWs, one can show that they are all M. In fact, the latter holds regardless
of the distribution on the letters. On the other hand, the 3-state DBW for comp((ab)ω) is
CF and NM. Hence, we have the following.

▶ Theorem 25. 2-states NBWs are M, yet 3-state CF NBWs may be NM.

Proof. Consider the 2-state NBW A = ⟨Σ, {q0, q1}, q0, δ, α⟩. If both states are accepting or
rejecting, then Pr(L(A), n) = 1 or 0 respectively. Let Σi→j = {σ ∈ Σ | δ(qi, σ) = qj}. If
α = {q0}, then a finite word w ∈ Σ∗ is such that wω /∈ L(A) if every run of w reaches the state
q1 and there does not exist a letter σ in w such that σ ∈ Σ1→0. Let f be some distribution on
Σ. The probability that all the runs on wω, for a random word w of length n to be rejecting,
under a distribution f , is exactly (

∑
σ∈Σ\Σ1→0

f(σ))n−1 · (
∑

σ∈Σ0→1∩Σ\(Σ1→0∪Σ0→0) f(σ)).
Since

∑
σ∈Σ\Σ1→0

f(σ) ≥ 0, we have that A is M.
If α = {q1}, then a finite word w ∈ Σ∗ is such that wω /∈ L(A) if every run of w never

visits q1. The probability that random word w of length n to be such that wω /∈ L(A), under
a distribution f , is then (

∑
σ∈Σ\Σ0→1

f(σ))n. Hence, A is M. ◀

Note that all LTL formulas induce CF languages [21]. For example, the infinite counterpart
of the language from Example 2 is Lω

once = S∗
1 · S2 · Sω

1 , which corresponds to the formula
S1U(S2 ∧XG(S1)). Note that for all n ≥ 1, we have that Prω(Lω

once, n) = 0, as a periodic
word includes either none or infinitely many occurrences of S2. On the other hand, for the

FSTTCS 2023

26:14 Monotonicity Characterizations of Regular Languages

language L induced by the formula GF (S2), we have Prω(L, n) = 1 − 1
2n , which is strictly

monotonic. Indeed, L can be recognized by a 2-state NBW. A more surprising example is
L′ = GF (S2 ∧ X(S2)), which requires infinitely many successive occurrences of S2. Note
that the length of the required sequence of S2’s is even, and so the periodic nature of words
may hint that L′ is not monotonic. However, as L′ can be recognized by a 2-state NBW,
Theorem 25 implies that it is actually monotonic.

We continue to our most technically elaborated result. For L ⊆ Σω, let L 1
ω = {u ∈ Σ∗ :

uω ∈ L}. We describe a construction that enables us to reduce reasoning about Prω(L, n)
to reasoning about Pr(L 1

ω , n). In Theorem 26 we describe the construction for L given by a
DPW, which involves an exponential blow-up. Then, in Theorem 27, we prove an exponential
lower bound for the construction, in fact for a family of languages definable by DBWs of
depth 1.

▶ Theorem 26. For every DPW A, there exists a DFW A 1
ω such that L(A 1

ω) = L(A) 1
ω .

The construction of A 1
ω is effective and its size is exponential in the size of A.

Proof. Let A = ⟨Σ, Q, δ, q0, α⟩, with α : Q → {1, . . . , k}. For two functions s : Q → Q

and c : Q → {1, . . . , k}, and a word u ∈ Σ∗, we say that the pair ⟨s, c⟩ captures u if for all
states q ∈ Q, we have that s(q) = δ∗(q, u), and c(q) = min{α(δ∗(q, v)) : v is a prefix of u}.
Thus, s describes how each of the states in Q proceeds when it reads u, and c describes
the minimum color that is visited along the way. Note that since A is deterministic, then
every word u has a single pair of functions that captures it. We combine s and c to a single
function f : Q → Q× [k], and define successive applications of f by f0(q) = ⟨q, α(q)⟩ and
f i+1(q) = ⟨δ∗(si(q), u),min{ci(q), c(si(q)}⟩. Thus, f i(q) = ⟨q′, j⟩, for q′ = δ∗(q, ui) and j

being the minimum color that is visited when ui is read from q.
Let f : Q → Q× [k] be a function that captures a word u ∈ Σ∗, and let f = ⟨s, c⟩. By the

pigeonhole principle, there must be 0 ≤ i1 < i2 ≤ |Q| for which si1(q0) = si2(q0). Let i1 < i2
be such indices that minimize i2, and let q be the state such that si1(q0) = si2(q0) = q. By
the definition of acceptance in parity automata, we have that uω is accepted from q0 iff
ci2−i1(q) is even. Indeed, the run from q0 on uω starts by reaching q after reading ui1 , and
then repeatedly traverses a loop in q while reading ui2−i1 , with ci2−i1(q) being the minimal
color that is visited along the loop, making it the minimal color visited infinitely often while
reading uω. Accordingly, we say that a function f : Q → Q × [k] is good if the minimal
indices 0 ≤ i1 < i2 for which si1(q0) = si2(q0) are such that ci2−i1(si1(q0)) is even. Note that
the definition of f is independent of a word. Yet, a word u ∈ Σω is accepted by A iff the
function f that captures it is good. Also note that deciding whether a given function f is
good can be done in polynomial time.

We define the DFA A 1
ω = ⟨Σ,F , ρ, f0, α

′⟩, where F is the set of functions f : Q →
Q × {1, . . . , k}, and f0 and ρ are defined so that after reading a word u ∈ Σ∗, the DFA
reaches a state that captures u. Formally, the initial state f0 is the function that captures ϵ,
thus s0(q) = q and c0(q) = α(q), for all q ∈ Q, and the transitions function ρ is such that for
every state ⟨s, c⟩ ∈ F and letter σ ∈ Σ, we have that ρ(⟨s, c⟩, σ) = ⟨s′, c′⟩, where for every
q ∈ Q, we have that s′(q) = δ(s(q), σ) and c′(q) = min{c(q), α(s′(q))}. Finally, α′ is the set
of all good functions. Since a word u ∈ Σω is accepted by A iff the function f that captures
it is good, we have that L(A 1

ω) = L(A) 1
ω , and we are done. ◀

▶ Theorem 27. There is a family L1, L2, L3, . . . of languages of infinite words such that for
every n ≥ 1, there is a DBW of depth 1 with O(n) states that recognizes Ln, yet every DFW
that recognizes L

1
ω
n needs at least 2n states.

Y. Feinstein and O. Kupferman 26:15

Proof. For n ≥ 1, let Σn = {1, 2, . . . , n}. We define

Ln = {Σ∗
n · # · σ1 · σ2 · · ·σk · # · (Σn + #)ω : σ1 ∈ {σ2, . . . , σk}}.

Note that Ln ⊆ (Σn ∪ {#})ω. First, a DBW for Ln waits for the first #, records in its state
space the letter σ after it, then waits for σ to appear before a second #, after which the
DBW moves to an accepting sink. If σ = # or if the second # appears before σ reappears,
the DBW goes to a rejecting sink. Clearly, the DBW needs only O(n) states. Also, each
word in Ln has a good prefix, and so Ln is a co-safety language, and the DBW is of depth 1.

Assume by way of contradiction that there is a DFW An = ⟨Σn, Q, q0, δ, α⟩ that recognizes
L

1
ω
n and has less than 2n states. For a set S ⊆ Σn, let wS ∈ Σ∗

n be a word that contains exactly
all the letters in S. Since An has less than 2n states, there are two sets S1, S2 ⊆ Σ∗

n such that
the words wS1 and wS2 lead to the same state in An. Formally, δ∗(q0, wS1) = δ∗(q0, wS2) = q,
for some state q. Let σ ∈ Σ∗

n be such that, without loss of generality, σ ∈ S1 \ S2. Consider
the state q′ = δ∗(q, σ · #). On the one hand, as (wS2 · σ · #)ω ̸∈ Ln, we have that q′ ̸∈ α. On
the other hand, as (wS1 · σ · #)ω ∈ Ln, and An is deterministic, we have that q′ ∈ α, and we
have reached a contradiction. ◀

In the context of monotonicity, the construction of A 1
ω enables us to lift the positive

result about DFW[1]s to DBW[1]s. For this, we prove that the construction in Theorem 26
preserves weak[1]ness:

▶ Theorem 28. DBW[1]s are EM.

Proof. Consider a DBW[1] A = ⟨Σ, Q, q0, δ, α⟩. In order to use the notations in Theorem 26,
we view α as a parity condition α : Q → {1, 2, 3}. Let A 1

ω = ⟨Σ,F , ρ, f0, α
′⟩ be the

DFW obtained by applying the construction in Theorem 26 on A. We prove that A 1
ω is a

DFW[1]. Then, EMness of L(A) follows from the fact that Prω(L(A), n) = Pr(L(A 1
ω , n)

and Theorem 12.
Consider a reachable state f ∈ F . Let u ∈ Σ∗ be such that ρ∗(f0, u) = f . Thus, f

captures u. Consider a letter σ ∈ Σ, and let f ′ = ρ(f, σ). Thus, f ′ captures u · σ. We prove
that if f ̸= f ′, then f ̸= ρ∗(f, σ · w), for all w ∈ Σ∗. Thus, the only cycles through the state
f are self loops.

Let f = ⟨s, c⟩, f ′ = ⟨s′, c′⟩, and assume that f ′ ̸= f . First, if for all states q ∈ Q, we
have that s(q) = s′(q), then, as c′(q) = min{c(q), α(s′(q))}, it must be that for all states
q ∈ Q, we also have that c(q) = c′(q). Thus, f ′ ̸= f implies that there is a state q ∈ Q

such that s(q) ̸= s′(q). Since f captures u and f ′ captures u · σ, the latter implies that
δ∗(q0, u) ̸= δ∗(q0, u · σ). Hence, as A is a DBW[1], we have that δ∗(q0, u) ̸= δ∗(q0, u · σ · w)
for all w ∈ Σ∗. Thus, f ̸= ρ(f, σ · w), for all w ∈ Σ∗, and we are done. ◀

We now show that Theorem 28 is tight.

▶ Theorem 29. DBW[2]s and NBW[1]s may be NM.

Proof. Consider the DBW[2] obtained by viewing the DFW from Figure 6 (left) as a Büchi
automaton with α = {s2}. Consider also the NBW[1] obtained by viewing the NFW[1]
appearing in Figure 4 (right) as a Büchi automaton. It is easy to see that both Büchi
automata recognize the language comp((ab)ω). As argued in the proof of Theorem 23, the
language is NM. ◀

FSTTCS 2023

26:16 Monotonicity Characterizations of Regular Languages

7 Discussion

We studied how the length of words influences their probability to belong to a regular language.
We characterized formalisms that induce monotonic languages. The characterization is
tight, in the sense that all the restrictions composing it are essential. Nevertheless, the
characterization is not a necessary condition, in the sense that there are languages that
do not satisfy it and are monotonic. The general problem of deciding the monotonicity
characteristics of the language of a given automaton is the subject of future research. As
discussed in Section 3.3, the question is very easy for unary automata. Moreover, our
construction of A 1

ω solves the challenges that have to do with periodicity and extends a
solution for the setting of finite words to a solution for the setting of infinite words. We
showed that the answer to the question depends also in the distribution of the letters in the
alphabet. Since the problem of finding the spectrum of a stochastic matrix is difficult, our
problem is expected to be difficult too. A related problem is to find the length in which
eventually monotonic languages start to be monotonic. As we have seen in Example 2,
this distance may be exponential in the size of the automaton also for deterministic weak
automata of width 1.

References
1 I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL

formulas. Formal Methods in System Design, 18(2):141–162, 2001.
2 J. Berstel. Sur la densité asymptotique de langages formels. In Proc. 1st Int. Colloq. on

Automata, Languages, and Programming, pages 345–358, 1972.
3 J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata, volume 129 of Encyclopedia

of mathematics and its applications. Cambridge University Press, 2010.
4 M. Bodirsky, T. Gärtner, T. von Oertzen, and J. Schwinghammer. Efficiently computing

the density of regular languages. In Proc. 6th Latin American Symposium on Theoretical
Informatics, volume 2976 of Lecture Notes in Computer Science, pages 262–270. Springer,
2004.

5 M. Chechik, M. Gheorghiu, and A. Gurfinkel. Finding state solutions to temporal queries. In
Proc. Integrated Formal Methods, 2007. To appear.

6 J. Cohen, D. Perrin, and J-Eric Pin. On the expressive power of temporal logic. Journal of
Computer and System Sciences, 46(3):271–294, 1993.

7 S. Ben David and O. Kupferman. A framework for ranking vacuity results. In 11th Int.
Symp. on Automated Technology for Verification and Analysis, volume 8172 of Lecture Notes
in Computer Science, pages 148–162. Springer, 2013.

8 R. Fagin. Probabilities in finite models. Journal of Symb. Logic, 41(1):50–5, 1976.
9 G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic on finite

traces. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
pages 854–860, 2013.

10 Y.V. Glebskii, D.I. Kogan, M.I. Liogonkii, and V.A. Talanov. Range and degree of realizability
of formulas in the restricted predicate calculus. Kibernetika, 2:17–28, 1969.

11 Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.
12 O. Kupferman and M.Y. Vardi. Model checking of safety properties. Formal Methods in

System Design, 19(3):291–314, 2001.
13 R. McNaughton and S. Papert. Counter-Free Automata. MIT Pres, 1971.
14 Y. Nakamura. The almost equivalence by asymptotic probabilities for regular languages and

its computational complexities. In Proc. 7th International Symposium on Games, Automata,
Logics and Formal Verification, volume 226 of EPTCS, pages 272–286, 2016.

15 A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science,
13:45–60, 1981.

Y. Feinstein and O. Kupferman 26:17

16 Jeffrey S. Rosenthal. Convergence rates for markov chains. SIAM Review, 37(3):387–405,
1995.

17 Ben-David S, D. Fisman, and S. Ruah. Temporal antecedent failure: Refining vacuity. In
Proc. 18th Int. Conf. on Concurrency Theory, volume 4703 of Lecture Notes in Computer
Science, pages 492–506. Springer, 2007.

18 A. Salomaa and M. Soittola. Automata Theoretic Aspects of Formal Power Series. Springer-
Verlag, 1978.

19 R. Sin’ya. An automata theoretic approach to the zero-one law for regular languages: Al-
gorithmic and logical aspects. In Proc. 6th International Symposium on Games, Automata,
Logics and Formal Verification, volume 193 of EPTCS, pages 172–185, 2015.

20 A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Computing,
6:495–511, 1994.

21 P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1–2):72–99,
1983.

A Useful Results from Linear Algebra

In this section we elaborate on the relevant results from linear algebra that are used in the
proof of Theorem 11. The considerations are similar to these developed in [16]. For simplicity,
we assume that all matrices we consider are squared (unless stated otherwise).

Recall that an eigenvalue of a matrix A is a scalar (denoted as λi) such that there exists
a non-zero vector v for which Av = λiv.

The characteristic polynomial of A is the equation det(A− λI) where I is the identity
matrix, det represent the determinant operation and λ is a scalar.

It is known that the eigenvalues of A are the roots of the characteristic polynomial
(see [11], Chapter 1).

The algebraic multiplicity of an eigenvalue λi is its multiplicity as a root of the characteristic
polynomial.

For two matrices A and B, we say that A is similar to matrix B if there exists an
invertible matrix U such that A = UBU−1. It can be shown that similar matrices have the
same characteristic polynomials, as such they have the same eigenvalues.

A matrix is diagonal if all its non-zero elements are on the diagonal, and is diagonalizable
if it is similar to some diagonal matrix.

A Jordan block is a matrix A with some λ ∈ C on the diagonal and 1’s on the superdiagonal,
thus A is of the following form

λ 1 0 0

0 λ
. . . 0

...
. 1

0 · · · 0 λ

.

The 1 × 1 matrix (λ) is also a Jordan block. A Jordan Block with λ ∈ C on its diagonal is
sometimes called a Jordan block of λ.

A Jordan matrix is a matrix with Jordan blocks on its diagonal. In other words, let
{B1, . . . , Bn} be some Jordan blocks. Then, a Jordan matrix is of the following form

B1 0 0 0

0 B2
. . .

...
...

. 0
0 · · · 0 Bn

.

FSTTCS 2023

26:18 Monotonicity Characterizations of Regular Languages

Let A be some matrix. It is known that although not all matrices are diagonalizable,
there always exists a Jordan matrix J that is similar to A (see [11], Chapter 3). Furthermore,
the Jordan blocks of J are made of the eigenvalues of A and each block is of size that is not
bigger than the algebraic multiplicity of its eigenvalue. Matrix J is called the Jordan normal
form of A. Note that J is only unique up to the order of its Jordan blocks.

Jordan blocks give us a way to calculate the n’th power of a matrix directly. Let B be a
Jordan block of size k. Then, for n > k, we have that

Bn =

λn
(

n
1
)
λn−1 (

n
2
)
λn−2 · · · · · ·

(
n

k−1
)
λn−k+1

0 λn
(

n
1
)
λn−1 · · · · · ·

(
n

k−2
)
λn−k+2

...
.

...
...

...
.

...
...

. . . λn
(

n
1
)
λn−1

0 · · · · · · · · · 0 λn

.

(1)

▶ Example 30. Recall that in Example 9 we considered the DFW A from Example 8 and
calculated the probabilities xn

0 and xn
1 of a run of length n to end on the states q0 and q1,

respectively. We can now elaborate on the calculation, which is based on diagonalizing PA:

PA =
(1

2
1
2

1 0

)
=

(−1
2 1
1 1

)
·
(−1

2 0
0 1

)
·
(−2

3
2
3

2
3

1
3

)
Accordingly,(

xn
0 xn

1
)

=
(
1 0

)
· Pn

A

=
(
1 0

)
·
(−1

2 1
1 1

)
·
(−1

2 0
0 1

)n

·
(−2

3
2
3

2
3

1
3

)
=

(
2+(−1

2)n

3
1−(−1

2)n

3

)
.

(2)

⌟

Let M ∈ Rd×d be a square matrix. Let λ1, λ2, . . . , λl be the distinct eigenvalues of M
in descending order by their absolute value. That is, |λ1| ≥ |λ2| ≥ . . . ≥ |λl|. If M is
diagonalizable, then for every index (i, j) in M , we have that

(Mn)ij = c1(λ1)n + c2(λ2)n + · · · + cl(λl)n, (3)

where c1, c2, . . . , cl ∈ C are complex numbers that depend on (i, j). If M is not diagonalizable,
then we instead rely on the Jordan normal form of M , which always exists. Using Property (1),
where n > d, we replace each expression ci(λi)n in (3) by

(c1
i (n)ki−1 + c2

i (n)ki−2 + · · · + cki
i)(λi)n,

where ki is the size of the largest Jordan block of λi, and c1
i , c

2
i , . . . , c

ki
i ∈ C.

By [11] (Theorem 3.1.11), if all the eigenvalues of M are real, then
c1

1, . . . , c
k1
1 , . . . , c1

l , . . . , c
kl

l are real too.
Let P ∈ Rd×d be some stochastic matrix. It is shown in [16] that for all 1 ≤ i ≤ l, we

have that |λi| ≤ 1, and that λ1 = 1 is an eigenvalue of P . Furthermore, the largest Jordan
block of λ1 = 1 is of size 1.

We can now prove Lemma 10, which is key to the proof of Theorem 11.

Y. Feinstein and O. Kupferman 26:19

▶ Lemma 10. Consider the stochastic matrix P ∈ Rd×d and the set S = {(i1, j1), · · · , (it, jt)}
of t indices in P . If all the eigenvalues of P are real and non-negative, then the sequence
{
∑

(i′,j′)∈S P
n
i′,j′}∞

n=1 is EM.

Proof. Let λ1, λ2, . . . , λl be the distinct eigenvalues of P in descending order by their
absolute value. Let {an} = {

∑
(i′,j′)∈S P

t
i′,j′}∞

t=1. Since P is a stochastic matrix, then for
every 1 ≤ i ≤ l, we have that |λi| ≤ 1. By our assumption, all the eigenvalues are real and
non-negative, and so, for every 1 ≤ i ≤ l, we have that 0 ≤ λi ≤ 1. Since the largest Jordan
block of λ1 = 1 is of size 1, then for every n > d, we get that

an = (1)nc1
1 + (λ2)n((n)k2−1c1

2 + (n)k2−2c2
2 + · · · + ck2

2) + · · · + (λl)n((n)kl−1c1
l + · · · + ckl

l),

for some c1
1, c

1
2, . . . , c

k2
2 , c1

3, . . . , c
1
l , . . . , c

kl

l ∈ R.
Now, observe that when n > d, the difference between two successive iterations of the

sequence is

an −an+1 = (λ2)n((n)k2−1(c1
2 −c1

2λ2)+ · · ·+ck2
2 −ck2

2 λ2)+(λ3)n(· · ·)+ · · ·+(λl)n(· · ·) (4)

If Equation (4) is equal to zero, we have that an = an+1 and so {an} is EM. Else, it is not
hard to prove that since 1 > λ2 > λ3 > · · · > λl ≥ 0, then there exists some non-zero element
(λi)n(n)ki−j(cj

i − cj
iλi) that is dominant in Equation (4). That is, there exist m0 ≥ d such

that for all m ≥ m0, we have that

|(λi)n(n)ki−j(cj
i − cj

iλi)| ≥ |an − an+1 − (λi)n(n)ki−j(cj
i − cj

iλi)|. (5)

Note that since λi > 0, we have that (λi)n(n)ki−j > 0. Since cj
i can be any real number,

we need to distinguish between cases. If cj
i − cj

iλi > 0, then an − an+1 > 0, implying that
{an}∞

m0
is MD. If cj

i − cj
iλi < 0, we have that an < an+1, in which case {an}∞

m0
is MI. In

both cases, {an} is EM. ◀

Note that Example 8 does not contradict Theorem 11, as λ = − 1
2 is an eigenvalue of P .

FSTTCS 2023

	1 Introduction
	2 Preliminaries
	2.1 Automata
	2.2 Monotonicity Characterizations of Regular Languages

	3 Theoretical Properties
	3.1 On the choice of a uniform distribution
	3.2 Monotonicity characterization and Boolean operations
	3.3 The case of unary languages

	4 An Algebraic Approach
	5 Classes of Monotonic Languages
	5.1 Weak automata – width
	5.2 Weak automata – depth
	5.3 Permutation-free automata

	6 Infinite Words
	6.1 Monotonicity in the length of the prefix
	6.2 Monotonicity in the length of the loop

	7 Discussion
	A Useful Results from Linear Algebra

