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Abstract
The task of delay management in public transport is to decide whether a vehicle should wait for a
delayed vehicle in order to maintain the connection for transferring passengers. So far, the vehicle
circulations are often ignored in the optimization process, although they have an influence on
the propagation of the delay through the network. In this paper we consider different ways from
literature to incorporate vehicle circulations in the delay management stage of public transport
planning. Since the IP formulation for the integrated problem is hard to solve, we investigate bounds
and develop several heuristics for the integrated problem. Our experiments on close-to real-world
instances show that integrating delay management and decisions on vehicle circulations may reduce
the overall delay by up to 39 percent. We also compare the runtimes and objective function values of
the different heuristics. We conclude that we can find competitive solutions in a reasonable amount
of time.
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1 Introduction

Public transportation plays an essential role in passenger mobility. An important factor
for the satisfaction of the passengers, and therefore also for the economic success of the
transportation company, is reliability. However, guaranteeing this is not an easy task:
Unplanned disturbances are inevitable in transportation networks. Because of numerous
interdependencies, these can have a huge impact on the overall network. Hence, an important
task in everyday business is to react to disturbances in the best possible way. The most
crucial decision to be made in this context is whether a vehicle should wait for a delayed
feeder vehicle. If the connecting vehicle does not wait for the feeder vehicle, the passengers
on the latter wishing to transfer miss their connection and have to wait for the next ride.
Especially in networks with a low frequency this is very frustrating for the passengers. On
the other hand, waiting for the delayed vehicle adds further delay in the network, since all
passengers on the connecting vehicle are then also affected by the delay and maybe even
miss a later transfer themselves. This way, the delay can propagate through the entire
network. Hence, the task of delay management is to make waiting decisions and find a
feasible disposition timetable keeping the passengers’ dissatisfaction to a minimum.
A further aspect which has to be considered are the vehicle schedules or rolling stock
circulations: If a vehicle arrives at the final destination of a trip with a delay and is scheduled
to serve another trip subsequently, it is possible that the latter cannot start on time. This
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also may propagate the delay. This type of delay propagation has only been sparsely treated
in the literature. In this paper, we suggest an approach to mitigate this effect, namely by
replanning the circulations of the vehicles: If there is another vehicle available, it can serve
the second trip, possibly even without delay. In order to make use of such a rescheduling, we
integrate the planning of vehicle circulations into the delay management problem.

Literature review. Delay Management has been studied extensively over the last two decades.
One of the first models, which is based on mixed-integer programming, was introduced in
[22, 23]. Different extensions to this model have been made. In [16] the limited capacity of
the track system was taken into account by adding headways to the integer programming
formulation and presenting heuristic solution approaches. The capacity of the stations was
considered in [4]. These models rest on the assumption that the passengers continue their
journey as planned in case of delays. In reality, passengers might adapt their routes to
the current situation. This possibility was first considered in [6]. Heuristics for solving the
problem with re-routing were presented in [3] and a software tool was introduced in [14]. For
literature reviews on delay management, we refer to [12, 7].

Integrating delay management on a macroscopic level and train scheduling on a microscopic
level was studied in [2]. In [5] a sequential approach for rescheduling timetable, rolling
stock and crew was presented. Integrating rescheduling of vehicle circulations and delay
management was considered in [11], where especially the rolling stock constraints are modelled
in detail but wait/no-wait decision with regard to passenger transfers are not considered.
First ideas for integrating vehicle circulation planning in delay management have been
sketched in [8, 15]. For an overview on vehicle scheduling, see [1].

Contribution of the paper. We consider three different models from literature: First, the
classic delay management problem where the vehicle circulations are ignored. Second, a
model which respects the planned vehicle circulations taking into account that delay is
propagated along the vehicles’ circulations. Third, we present an integrated model in which
the circulations are re-optimized within delay management. We analyze the models and their
relations and give bounds on the optimal objective values of the integrated formulation. We
also develop three heuristics to solve it and evaluate our approaches on close-to real-world
datasets.

2 Including vehicle circulations in delay management

In this section, we present integer programming formulations for three different models for
the delay management problem, differing in the extent to which the vehicle circulations are
considered.

All three models take an event-activity-network Npure = (E , Apure) based on a set of trips
T and a set of stations v ∈ V as input. A trip t ∈ T represents a section that needs to be
served by a single vehicle, e.g., a line. Arrival events and departure events are given by

Earr = {(v, t, arr) : t ∈ T arrives at v ∈ V } and Edep = {(v, t, dep) : t ∈ T departs at v ∈ V }

and E = Earr ∪ Edep. We assume that a timetable π ∈ N|E| is given and fixed, assigning
the scheduled time πi to event i ∈ E . The events are connected by the activities Apure :=
Adrive ∪ Await ∪ Atransfer, where
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Adrive := {((v1, t, dep), (v2, t, arr)) ∈ Edep × Earr : t serves v2 directly after v1},

Await := {((v, t, arr), (v, t, dep)) ∈ Earr × Edep},

Atransfer := {((v, t1, arr), (v, t2, dep)) ∈ Earr × Edep : there is a transfer from t1 to t2 at v},

are the drive, wait and transfer activities, respectively. Each activity a ∈ Apure has a
corresponding lower bound La ∈ N, the minimal time needed to perform the activity. Note
that if delays occur, possible upper bounds for activities often cannot be respected any more,
which is why we ignore them and only consider the lower bounds. A timetable is feasible if it
respects the bounds on the activities, i.e., if for all a = (i, j) ∈ Apure πj − πi ≥ La holds.

When dealing with delays, we distinguish the following two types of delays:
Source delays are caused by external factors, e.g., damaged tracks.
Propagated delays evolve within the transportation system. E.g., if a train arrives at a
station with a delay and hence also departs with a delay, then this departure delay has
been propagated along the waiting activity and is called propagated delay.

The goal of delay management is to adapt to these delays, i.e., to find a disposition timetable
x ∈ N|E| where xi denotes the time of event i ∈ E . When determining the disposition
timetable, we have to make two different kinds of decisions:

Wait/depart decisions: For every transfer a ∈ Atransfer we have to decide whether or not
it should be maintained.
Circulation decisions: We have to decide which vehicle operates which trip.

Note that for train transportation also headway activities need to be considered. For the
sake of simplicity these are neglected here, but could be added easily to all three models to
be presented.

In order to handle the circulation decisions, we define circulations c = (tc1 , . . . , tcn)
consisting of a list of trips which are operated consecutively by the same vehicle. Since an
event i uniquely determines its corresponding trip, we can model the circulations by defining
the following new types of events and activities,

Efirst := {i ∈ Edep : i is the first departure of a circulation}
Elast := {i ∈ Earr : i is the last arrival of a circulation}

Estart := {i ∈ (Edep\Efirst) : i is the first event of a trip}
Eend := {i ∈ (Earr\Elast) : i is the last event of a trip}

Acirc := {((v1, t1, arr), (v2, t2, dep)) ∈ Eend × Estart : t1 and t2 can be operated within
the same circulation}

and the set of all activities as A := Apure ∪Acirc. The EAN including the circulation activities
is denoted by N = (E , A). From the set of all possible circulation activities a subset has to
be chosen such that for every i ∈ Estart ∪ Eend there is exactly one ingoing and one outgoing
activity. We set Afix

circ := {a ∈ Acirc : a is chosen}. Note that the circulations do not refer to
cycles in the event-activity-network which is an acyclic time-expanded network. We are not
requiring periodic networks here.

Apart from the EAN, the input data contain the source delays and passenger weights. We
have two types of source delays, namely source delays di at events i ∈ E and source delays
da on activities a ∈ Atrain := Adrive ∪ Await. An event may just start late for some external
reason, e.g., a driver coming too late to work, while an activity may have a longer duration
as anticipated, e.g., due to a speed reduction on a piece of a track. Correspondingly, for the
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trip

Afix
circ

Acirc\Afix
circ

Figure 1 An EAN with circulation activities.

passengers weights we use wi for i ∈ E as the number of passengers reaching their destination
at event i. For a ∈ Atransfer the number of transferring passengers is given by wa. The total
sum of passengers’ delays can be approximated by only using the values wa and wi as shown
in [23]. We do not consider routing decisions depending on the disposition timetable.

We consider three different models for the delay management problem. In all of them the
goal is to find a disposition timetable minimizing the total delay of all passengers. The first
model is the usual model for delay management (see [23]) which ignores that delays may be
propagated along circulation activities and concentrates on the wait/depart decisions. We call
this model (DM). However, the resulting disposition timetable might not be operable if delay
is propagated along circulation activities. In the second model, (DM-fix), the circulation
activities are fixed beforehand and respected when computing the disposition timetable. It
finds a disposition timetable which can be operated. In the third model, (DM-opt), we go a
step further and allow that the circulation activities may be changed if this fits better to the
current situation. This means we optimize the circulations while computing the disposition
timetable. In order to formulate the models as integer programs, we encode the decisions to
be made as binary variables,

ya =
{

1 if the transfer a is cancelled
0 otherwise

for the transfer activities a ∈ Atransfer and

v(i,j) =
{

1 if circulation activity (i, j) is chosen
0 otherwise

for the circulation activities (i, j) ∈ Acirc. Note that the second set of variables is only
present in (DM-opt).

2.1 The classic delay management formulation (DM)
The formulation for the first model, (DM), is the “classic” delay management first been
proposed in [22].

z = min
∑
i∈E

wi(xi − πi) + T
∑

a∈Atransfer

waya (DM)

s.t. xi ≥ πi + di i ∈ E (1)
xj − xi ≥ La + da a = (i, j) ∈ Atrain (2)
M1ya + xj − xi ≥ La a = (i, j) ∈ Atransfer (3)
xi ∈ N i ∈ E (4)
ya ∈ {0, 1} a ∈ Atransfer. (5)
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The objective function minimizes the approximated total delay the passengers have at their
final destination. If a passenger misses a transfer, we assume that after a time period T

everything is on time again and we therefore penalize the missed transfer accordingly in the
second sum of the objective. The constraints (1) ensure that the source delays of the events
are respected by the disposition timetable. The propagation of the delays along the activities
a ∈ Apure is enforced by constraints (2) and (3). For a ∈ Atransfer this is only necessary if
the transfer is maintained, which is why we have the big-M-constraints here.

2.2 Delay management with fixed circulations (DM-fix)
In the second model, (DM-fix), the originally planned circulation activities Afix

circ are included.

zfix = min
∑
i∈E

wi(xi − πi) + T
∑

a∈Atransfer

waya (DM-fix)

s.t. xj − xi ≥ La a = (i, j) ∈ Afix
circ (6)

(1) − (5).

For (DM-fix) the objective function and constraints (1) to (5) are the same as for (DM) while
constraints (6) make sure that the circulation activities (chosen beforehand) are respected.
Note that in [7] the circulation activities are called turn-around activities Aturn.

2.3 Integrating delay management and vehicle scheduling (DM-opt)
Finally, in the third model, (DM-opt), we allow to make the decisions about the circulations
together with the decisions in delay management.

zopt = min
∑
i∈E

wi(xi − πi) + T
∑

a∈Atransfer

waya (DM-opt)

s.t. M2(1 − vij) + xj − xi ≥ La a = (i, j) ∈ Acirc (7)∑
i∈Eend:(i,j)∈Acirc

vij = 1 j ∈ Estart (8)

∑
j∈Estart:(i,j)∈Acirc

vij = 1 i ∈ Eend (9)

vij ∈ {0, 1} (i, j) ∈ Acirc (10)
(1) − (5).

The IP for the third model (DM-opt) (sketched in [8]) also contains all the constraints from
(DM). Additionally, we have constraints (7) to incorporate the delay propagation along the
circulation activities. Let i = (v1, t1, arr) ∈ Eend and j = (v2, t2, dep) ∈ Estart be the end
and the start event of two trips. Then choosing v(i,j) = 1 means that t1 and t2 appear
consecutively in a circulation, i.e., the vehicle operating the trip t1 proceeds from its last
station v1 of trip t1 to the first station v2 of trip t2 and then operates trip t2. Often v1 = v2,
i.e., t1 ends at the same station from which t2 departs. In case that v1 ̸= v2 we have an
empty trip between the two stations. In contrast to (DM-fix), the circulation activities are
not fixed beforehand, but are determined in the optimization process. We hence have another
type of big-M-constraints here. It was shown in [15] how to compute reasonable values for
M1 and M2. Furthermore, we have to ensure that for every i ∈ Eend and every j ∈ Estart
there is exactly one circulation activity starting respectively ending in this event. This means
we have to find a perfect matching, which is included by constraints (8) and (9). All three
models are totally unimodular if the binary variables ya and vij are given and fixed. We
hence need not explicitly restrict xi to be integer if all delays di and da are integer values.

ATMOS 2022
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Note that (DM) and (DM-fix) are similar: We simply add the delay propagation constraints
for Afix

circ, which are of the same form as those for Atrain. Hence, (DM-fix) can be solved
in the same way as (DM). (DM-opt), on the other hand, has a different structure, since it
includes the matching constraints and has big-M -constraints for the circulation activities.
Hence, it is much more difficult to solve, which also becomes apparent in the numerical
results in Section 5. However, from a practical point of view it is the preferable of the three
models, since it allows to adapt the circulations in a realistic way to the current situation.
Therefore, our aim is to solve the problem (DM-opt).

3 Analyzing the models

As already said, we are interested in solving (DM-opt). Unfortunately, this model is hard to
solve. On the other hand, (DM) is the classic delay management problem for which many
solution algorithms exist (see e.g. [12, 7]) and (DM-fix) can also be interpreted as a classic
delay management problem, just with a larger set of fixed activities. We hence can compute
the values of (DM) and (DM-fix). Our first result shows that these two values can be used
as bounds on the objective function value zopt of (DM-opt). Recall that delays da are only
relevant for activities a ∈ Atrain. To simplify notation, we set da := 0 for all a ∈ A\Atrain.

▶ Lemma 1. For the optimal objective values of the three problems the following holds:

z ≤ zopt ≤ zfix.

Proof. Every feasible solution for (DM-fix) is also feasible for (DM-opt) with appropriately
chosen v and every solution for (DM-opt) yields a feasible solution for (DM). ◀

As shown in [15], we can bound the maximal delay of the events in an optimal solution.

▶ Lemma 2 ([15]). For each of the models (DM), (DM-fix) and (DM-opt) there is an optimal
solution (x, y) respectively (x, y, v) such that for all events i ∈ E the following holds:

xi − πi ≤ dE
max + max

p∈Pi

∑
a∈p

da,

where Pi := {p : p is a directed path from an arbitrary node to i} and dE
max := maxi∈E di.

In the special case that da = 0 for all a ∈ A this simplifies to xi − πi ≤ dE
max.

As seen in the previous lemma we can use the solution of (DM) as a lower bound while
every solution to (DM-fix) is feasible for (DM-opt). Hence, solving (DM-fix) can be seen as a
heuristic for solving (DM-opt). In the following we discuss how good this approach is. We
first bound the value of (DM-fix).

▶ Lemma 3. For the optimal objective value zfix of (DM-fix) the following holds:

zfix ≤
∑
i∈E

wi · (dE
max + max

p∈Pi

∑
a∈p

da) =: B.

For the special case da = 0 for all a ∈ A we have that zfix ≤ P · dE
max, where P :=

∑
i∈E wi.

Proof. Let xi := πi + dE
max + maxp∈Pi

∑
a∈p da for all i ∈ E and ya := 0 for all a ∈ Atransfer.

Then (x, y) is a feasible solution for (DM-fix):
For all i ∈ E we have

xi = πi + dE
max + max

p∈Pi

∑
a∈p

da ≥ πi + di.
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For all a = (i, j) ∈ Atrain ∪ Atransfer ∪ Afix
circ we have

xj − xi = (πj + dE
max + max

p∈Pj

∑
a′∈p

da′) − (πi + dE
max + max

p∈Pi

∑
a′∈p

da′)

(∗)
≥ πj − πi + da ≥ La + da,

where (∗) follows from the fact that every path p ∈ Pi can be extended to a path p′ ∈ Pj

with
∑

a′∈p da′ + da =
∑

a′∈p′ da′ .
Therefore, the corresponding objective value∑

i∈E
wi(xi − πi) + T

∑
a∈Atransfer

waya =
∑
i∈E

wi · (dE
max + max

p∈Pi

∑
a∈p

da)

is an upper bound for zfix. ◀

Using this lemma, we can restrict the approximation ratio of the heuristic solution
(DM-fix), namely zfix ≤ B · zopt, if z ≥ 1 (and hence zopt ≥ 1).
An idea for another bound is to ignore the delay of passengers exiting at events i which
cannot be influenced by decisions on the circulations. From now on, let E+

j denote the set of
events that are reachable from j ∈ E , i.e., i ∈ E+

j ⊂ E iff there is a directed path from j to i

in (E , A) and Ai
circ := {(i′, j) ∈ Acirc : i ∈ E+

j } the set of circulation activities from which i

can be reached (see Figure 2).

i trip

Ai
circ

Acirc\Ai
circ

Figure 2 EAN showing notation Ai
circ.

This allows for another bound between zfix and z.

▶ Proposition 4. For the optimal objective values of (DM-fix) and (DM) we have

zfix ≤ z +
∑

i∈E:Ai
circ ̸=∅

wi(dE
max + max

p∈Pi

∑
a∈p

da)

︸ ︷︷ ︸
=:B̃

=: B′.

For the special case da = 0 for all a ∈ A we have zfix ≤ z + dE
max

∑
i∈E : Ai

circ ̸=∅ wi.

Proof. We consider an optimal solution (x̄, ȳ) of (DM) as in Lemma 2 and construct a
feasible solution (x, y) of (DM-fix) as follows: We set y := ȳ and

xi :=
{

x̄i, if Ai
circ = ∅,

πi + dE
max + maxp∈Pi

∑
a∈p da, otherwise.

Note that for (i, j) ∈ A, Ai
circ ≠ ∅ implies Aj

circ ̸= ∅, since every path to i can be extended
to j. Furthermore, by the definition of x and Lemma 2, for all i ∈ E we have x̄i ≤ xi ≤
πi + dE

max + maxp∈Pi

∑
a∈p da. Then (x, y) is indeed a feasible solution of (DM-fix):

For all i ∈ E we have xi ≥ x̄i ≥ πi + di.

ATMOS 2022
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For a = (i, j) ∈ Atransfer we have:

M1ya + xj − xi = M1ȳa + xj − x̄i ≥ M1ȳa + x̄j − x̄i ≥ La + da, if Ai
circ = ∅

and

M1ya + xj − xi =M1ȳa + (πj + dE
max + max

p∈Pj

∑
a′∈p

da′) − xi

≥M1ȳa + (πj + dE
max + max

p∈Pj

∑
a′∈p

da′) − (πi + dE
max + max

p∈Pi

∑
a′∈p

da′)

≥M1ȳa + πj − πi + da

≥La + da, otherwise.

Analogously, we can show that xj − xi ≥ La + da for a = (i, j) ∈ Atrain ∪ Afix
circ. For the

detailed proof we refer to [9].
Thus, all constraints of (DM-fix) are fulfilled and for the optimal objective value it follows
that

zfix ≤
∑
i∈E

wi(xi − πi) + T
∑

a∈Atransfer

waya

=
∑

i∈E:Ai
circ=∅

wi(x̄i − πi) +
∑

i∈E:Ai
circ ̸=∅

wi(dE
max + max

p∈Pi

∑
a∈p

da) + T
∑

a∈Atransfer

waȳa

≤ z +
∑

i∈E:Ai
circ ̸=∅

wi(dE
max + max

p∈Pi

∑
a∈p

da). ◀

We obtain that zfix − zopt ≤ B̃ and can use B′ for another estimate on the approximation
ratio analogously to B: If z ≥ 1 we receive that zfix ≤ B′ · zopt. Note that B and B′ have no
general order.

So far, we used that zopt ≤ zfix to derive bounds on (DM-opt). The following lemma
presents a bound on (DM-opt) which uses z: If (DM) finds a solution without any delay for
the passengers also (DM-opt) and (DM-fix) have solutions without any passengers’ delay.

▶ Proposition 5. Let wi > 0 for all i ∈ Eend and z = 0. Then also zfix = zopt = 0.

Proof. Let (x, y) be an optimal solution of (DM). We show that it is also feasible for (DM-fix).
Since z = 0, it holds xi = πi for all i with wi > 0. In particular, this is true for all i ∈ Eend.
Hence, for a = (i, j) ∈ Acirc it follows that

xj − xi = xj − πi

(∗)
≥ πj + dj − πi

(∗∗)
≥ La + dj ≥ La,

where (∗) follows from constraints (1) and (∗∗) from π being a feasible timetable. Thus,
x fulfils the constraints (6). All other constraints of (DM-fix) are naturally fulfilled, since
(x, y) is feasible for (DM). It follows that (x, y) is a feasible solution for (DM-fix) and hence,
zfix = 0. By Lemma 1, this also implies zopt = 0. ◀

4 Algorithmic approaches

For large instances, it is not possible to solve the IP formulation in reasonable time (see
Section 5). Thus, we consider three different heuristics. The first and the second ones look
for local improvements when changing the circulation activities while the third one iteratively
solves the delay management problem and optimizes the circulations.
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4.1 NEI: Next-Event-Improve
A first heuristic approach is to compute a solution for (DM-fix), look for local improvements
of the matching problem, and solve (DM-fix) again with the newly chosen circulations. We
continue doing so until the solution does not improve any more.
Choosing the circulation activities means solving a perfect matching in the graph N [Acirc]:
We have to match every event from Eend to an event from Estart by some circulation activity.
For evaluating the quality of such a matching, for every trip we look at the delay which is
propagated to the next event right after the start of the trip. Hence, for (i, j) ∈ Acirc we
consider the time xk at event k ∈ E , where (j, k) ∈ Adrive is the first activity of the trip starting
at j. By (1) it has to hold xk ≥ πk+dk. Furthermore, (2) implies xk ≥ xj+L(j,k)+d(j,k), so we
need xk ≥ max(πk +dk, xj +L(j,k)+d(j,k)). Analogously, it holds xj ≥ max(πj +dj , xi+L(i,j))
by (1) and (7) if vij = 1. Assuming that possible transfers to j are not maintained, for the
disposition time of event k used in the objective function of Algorithm 1 (see appendix) we
obtain the approximation x̃k = max(πk + dk, max(πj + dj , xi + L(i,j)) + L(j,k) + d(j,k)) if
vij = 1, where xi is the time of event i in the incumbent solution.
For fixed circulations given by v we denote the corresponding instance of (DM-fix) by
(DM-fix)(v).

4.2 RE: Reachable Events
An idea for improving the running time of the algorithm is to not compute a matching for
the whole EAN in every iteration, but to do so successively. The intuition behind this is
that the choice of “later” circulation activities depends on the choice of “earlier” circulation
activities. Hence, we fix the “early” circulation activities first and the “late” ones afterwards.
Since an EAN is a time-expanded network, this can be expressed in terms of reachability.
For j ∈ Estart let l be the maximal number of start events on a directed path in N = (E , A)
from an arbitrary node to j. We call l the level of j and denote it by lv(j) and the maximal
level is denoted by lmax. An example with five trips is shown in Figure 3a. The red nodes
are the end events Eend, while the blue nodes are the start events Estart. The green path
ending at i contains two blue nodes and there is no path ending at i with more than two
blue nodes. Hence, we have lv(i) = 2. We could define the levels of the end events Eend
analogously, namely by counting the maximal number of end events on a path to i ∈ Eend.
This would lead to the levels shown in Figure 3b. However, in this case both levels contain
an odd number of nodes, so we cannot find a perfect matching within the single levels (which
is what we want to do in the heuristic). We can fix this problem by adapting the definition
of the end events Eend. For an end event i ∈ Eend we define lv(i) := lv(j), where j ∈ Estart
such that (i, j) ∈ Afix

circ. This way it is ensured that there always exists a perfect matching
within the single levels, namely the one given by Afix

circ. As an example we have a look at
Figure 3c. The dashed arcs represent the set Afix

circ and the dotted arcs the set Acirc\Afix
circ.

A disadvantage of the objective function in Algorithm 1 is that it is “too local”, i.e., the
set of events we consider when fixing the matching is quite small. Thus, in our next approach
we want to extend the objective function to not only take into account the delay at the next
events, but at all reachable events. Furthermore, we want to fix the matching “level-wise”
with the above definition of a level.

For some level l we denote by E l := {i ∈ E : lv(i) = l} the set of events on level l and
E l

start := E l ∩ Estart and E l
end := E l ∩ Eend. Furthermore, Al

circ := {(i, j) ∈ Acirc : i, j ∈ E l} is
the set of circulation activities between vertices of the same level l.

Let N l
circ = (E l

end ∪ E l
start, Al

circ) be the subgraph induced by the circulation activities on
level l. Furthermore, we denote the start and end events on level l together with all nodes
reachable from these by E l+

all := E l
end∪E l

start∪{i ∈ E : i is reachable from j for some j ∈ E l
start}
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1 2

2

i

(a) Levels of Estart.

1

1 1 2 2

2

(b) Levels when using the definition for the levels
of Estart also for Eend.

2

1 1 2 2

2

(c) Levels according to our definition.

Figure 3 Example showing the definition of the levels.

and set N l+

all := (E l+

all , Al+

all) := N [E l+

all ] the subgraph induced by E l+

all . Analogously to the
subsets of A, also for Al+

all we define the subsets Al+

train = Al+

drive ∪ Al+

wait, Al+

transfer and Al+

circ.
Now in every step of the heuristic we want to solve (DM-fix) for N l+

all while simultaneously
reoptimizing the circulation activities in Al

circ and using the values xi for i ∈ E l
end we fixed in

the iteration before. This corresponds to solving the IP (DM-opt-l-all), which can be found
in the appendix, together with the resulting heuristic given in Algorithm 2.

4.3 DM-VS

Next we want to pursue a different approach, where we alternately solve (DM-fix) and
optimize the vehicle circulations. Hence, we first introduce the vehicle scheduling problem.
Usually, this problem is considered in the so-called trip graph, see e.g. [1]. However, to
be consistent with our notation, we formulate it in the EAN. For an overview of different
vehicle scheduling models we refer to [1]. A vehicle schedule is an assignment of vehicles
to trips such that every trip is covered exactly once. This corresponds to an assignment
fulfilling the constraints (8) to (10). The task of the vehicle scheduling problem (VS) is to
find cost-minimal vehicle circulations, where the costs are most often given by a weighted
sum of different cost shares. In our case, we are considering the fixed costs for using a vehicle,
the covered distance and the driving time of the vehicles. Recall that in the definition of
Estart and Eend we omitted the first departure and the last arrival of every circulation. In
particular, if a vehicle depot is considered, the trips of the vehicles from the depot to the first
trip of a circulation and from the last trip of a circulation back to the depot, and therefore
also the number of necessary vehicles, are not changed. We can therefore omit the fixed
costs for using a vehicle. Hence, we obtain the following formulation for a given disposition
timetable x:

min
∑

(i,j)∈Ãcirc

vij · l(i, j) (VS(x))

∑
i∈Eend:(i,j)∈Ãcirc

vij = 1 j ∈ Estart (8)

∑
j∈Estart:(i,j)∈Ãcirc

vij = 1 i ∈ Eend (9)

vij ∈ {0, 1} (i, j) ∈ Acirc, (10)
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where l(i, j) is the length (in kilometers) of a shortest path from the station of event i to
the station of event j. Note that the set Ãcirc = {(i, j) ∈ Acirc : xj − xi ≥ L(i,j)} of available
circulation activities depends on the given timetable x and since the timetable is fixed we
may omit the driving time of the vehicles from the objective function.

The idea of the new heuristic is the following: We first solve our instance of (DM-fix)
and obtain a disposition timetable x. Next, we solve (VS)(x), i.e. we compute optimal
vehicle circulations based on the times from the disposition timetable. This gives us a set
of circulation activities with incidence vector vnew, which we then use to solve the delay
management problem again, i.e., we solve (DM-fix)(vnew). We iterate until there is no
improvement to the objective value of (DM-fix). The heuristic is given in Algorithm 3 (see
appendix).

5 Computational results

In this section, we evaluate the results from the previous sections computationally using
close-to real-world data. We compare the results for the three models (DM), (DM-fix) and
(DM-opt) and analyze the performance of the heuristics developed in Section 4.

For all experiments we use the open-source software framework LinTim, see [17, 18]. We
tested various close-to real-world datasets including representations of the metro system of
Athens, the bus system of the German city Göttingen and several datasets depicting parts
of the German high-speed railway network. An overview of the used datasets is given in
Table 3 in the appendix. We use a given timetable repeated periodically every hour with a
given vehicle schedule which covers 24 hours. For the three delay management models, we
use the four hour time interval from 8:00 am to 12:00 pm. Information about the resulting
EAN is given in Table 4 in the appendix. We use a LinTim procedure to generate uniformly
distributed source delays. An interval for the size of the delays as well as the number of delays
(given as percentage of the number of events and driving activities) are given as parameters.
We consider several settings, which are given in Table 5 (see appendix). We implemented
the IP models in Python and ran them on an Acer laptop with Intel(R) Core(TM) i5-7200U
CPU @2.5 GHz and 8 GB RAM using the solver Gurobi 9.0.1 ([10]). In order to provide
exact results, the instances which could not be solved within one hour were additionally run
on a compute server with 12 cores of Intel(R) Xeon(R) X5680 @3.3 GHz and 128 GB RAM.

5.1 Comparison of (DM), (DM-fix) and (DM-opt)

Objective Values. We start by comparing the optimal objective values of the three models
(DM), (DM-fix) and (DM-opt). Recall Lemma 1: z ≤ zopt ≤ zfix. Figure 4 shows the gap
between zfix and zopt and between zfix and z for different percentages of events/activities
with a source delay from Table 5. For all datasets we observe that zopt and z are very close.
The only exception is the setting with 5% of source delays for Göttingen: here we have
z ≈ 0.73zfix and zopt ≈ 0.86zfix, i.e., z is almost 15% smaller than zopt. The deviation of zfix

and zopt is much bigger, but depends a lot on the used dataset. For Athens the objective
value is improved by almost 39% in the setting of 3% source delay. Interestingly, for Germany
there is hardly any difference between the three values, probably due to the decreased
number of possible circulations in a (relatively) sparse railway network. We conclude that the
quality of the lower bound given by z is rather good, while (DM-opt) improves the solution
significantly compared to (DM-fix).
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Figure 4 Comparison of objective values in settings 1 to 3.

Table 1 Average computation times (in seconds) for different percentages of events/activities
with a source delay. Instances which could not be solved within one hour are marked as “limit”.

Athens Göttingen Germany
1% 3% 5% 1% 3% 5% 1% 3% 5%

(DM) 0.26 0.93 0.34 8.52 19.10 510.09 2.65 3.53 3.81
(DM-fix) 0.30 0.77 0.45 12.96 153.78 1160.62 2.62 3.74 3.79
(DM-opt) 16.93 138.65 limit 470.17 limit limit 6.29 8.85 9.08

Computation times for IP-formulations. Next, we investigate the computation times for
solving the integer programs, see Table 1. The time for reading the necessary data, which
is never more than a few seconds, is not included in these numbers. First, we consider
the results for Athens. Both (DM) and (DM-fix) could be solved within a second. While
(DM-opt) for 1% delays was still quite fast with about 17 seconds, the computation time
increased rapidly with an increasing number of delays. With 3% delays more than two
minutes were needed and the instance with 5% delays could not be solved within the time
limit of one hour. However, the optimality gap at the end of the time limit was only 0.58%.
For Göttingen the situation is worse. Here, already (DM) needed nearly 9 minutes in the
case of 5% delays and for (DM-fix) it were almost 20 minutes. For solving (DM-opt) with
1% delays about 8 minutes were needed, while neither for 3% nor for 5% the IP could be
solved within the time limit. A gap of 2.42% respectively 16.59% was left.
The results for Germany paint a completely different picture. All instances could be solved
in at most 9 seconds. This is surprising since the infrastructure network as well as the sets
E and Apure for Germany are larger than for both of the other instances, see Tables 3 and
4. However, the set Acirc of all possible circulation activities is much smaller, which makes
finding the matching when solving (DM-opt) an easier task.

5.2 Heuristics

As established in the previous section, while (DM-opt) for Germany can be solved in seconds,
this is not the case for Athens and Göttingen. Hence, in this section we evaluate the
performance of the different heuristics from Section 4 for both of these datasets. Recall that
in the level-wise heuristic RE only those arcs (i, j) ∈ Acirc with lv(i) = lv(j) are considered.
For Athens this set contains 2706 arcs, for Göttingen it is 6200, which is in both cases
significantly smaller than the original set Acirc.
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Figure 5 Quality of heuristics in settings 1 to 3: Athens, Göttingen and Göttingen with 1%
gap.

Table 2 Average computation times (in seconds) of heuristics for different percentages of events/ac-
tivities with source delays. Instances which could not be solved within one hour are marked as
“limit”.

Athens Göttingen Göttingen with 1% gap
1% 3% 5% 1% 3% 5% 1% 3% 5%

RE 42.32 44.87 49.56 138.68 2831.62 limit 54.26 110.52 271.02
DM-VS 24.15 25.52 47.07 79.70 3166.24 limit 22.75 46.26 95.91
(DM-fix) 0.30 0.77 0.45 12.96 153.78 1160.62 2.63 2.96 10.48

Solution Quality. We start by assessing the quality of the solutions, i.e., we compare
the objective values to zopt, see Figure 5. If the time limit of one hour was reached, the
best found solution is given. Note that all algorithms start by solving (DM-fix), so their
computation time will be larger than simply solving (DM-fix). Hence, it only makes sense to
use these heuristics if they provide solutions with an objective value smaller than zfix. While
Algorithm NEI fails to produce any solutions with objective value better than zfix, the others
yield significantly better results and were able to improve the solution given by (DM-fix) in
almost all cases. On the Athens data Algorithm RE is always better than DM-VS. We note
that for Athens, although significantly better than (DM-fix), the solution quality is still quite
poor for all algorithms: the smallest gap compared to zopt we obtained is 23%. The results
are much more promising for Göttingen, where we were able to obtain a gap of less than 8%
for the setting with 3% delays. The case of 5% of source delays was the only one in which
RE could not improve the solution of (DM-fix). DM-VS only yields a slight improvement.

Computation Times. For comparing the computation times of the heuristics we omitted
NEI, since it is inferior to (DM-fix). As can be seen in Table 2, both heuristics take much
longer than solving (DM-fix). However, for the Athens dataset they still run in reasonable
time: all instances could be solved within one minute, where RE is always a bit slower than
DM-VS. For the Göttingen data the computation times are even longer. While the instance
with 1% delays could be solved within a few minutes, for 3% delays the computation times
increased significantly. Even the faster of the heuristics took about 47 minutes, which is not
acceptable. With 5% delays the time limit was reached for both algorithms. A possibility to
mitigate this problem is to allow a small optimality gap when solving the integer programs
used in the algorithms. With such a gap of 1% we repeated the experiments for Göttingen.
As Table 2 shows, the effect is enormous: in all cases the computation times reduced to less
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than 5 minutes. As can be seen in Figure 5, in the first two settings the solution quality
is as good as in the previous experiments. For the setting with 5% source delays we get a
significant improvement: RE now finishes within the time limit and yields good results with
about 6% optimality gap.

6 Outlook

In this paper we showed the potential of including decisions on vehicle circulations in delay
management and we developed and analyzed three heuristics for the integrated problem,
two of them providing very good solutions in our experiments. We have also seen that the
price of sequentiality (see [21, 19]), i.e., the ratio between the optimal objective without
integrating the vehicle circulation decisions and the optimal objective value for the integrated
problem, can be bounded theoretically, but the bound can become very high. This coincides
with our experiments in which we show that integrating vehicle circulation decisions in delay
management may reduce the delay for the passengers significantly.

There are several aspects for ongoing research. First, a further speed-up of the heuristics
is relevant. Second, some aspects of delay management were not considered here. This
includes headway constraints between vehicles as well as realistic passenger behavior, e.g., in
the form of rerouting. The latter may be included along the lines of [20]. Finally, it would
be best to avoid delays as much as possible. This can be done by making the timetable more
robust. Many research papers are devoted to the topic of robust timetabling, see, e.g., [13]
and references therein. In the context of our paper, a timetable is robust if for any delay
scenario there exists a solution to the delay management problem with acceptable passengers’
delays. This is a further interesting topic for future research.
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A Algorithms

Algorithm 1 Next-Events-Improve (NEI).

Input : EAN N = (E , A), incidence vector vold of Afix
circ

Output : A feasible solution (x, y, v) of (DM-opt)

1 Solve (DM-fix)(vold). Let (x, y) be an optimal solution and z̃ the optimal objective
value.

2 while true do
3 Compute a perfect matching in Ncirc := N [Acirc] with incidence vector vnew such

that ∑
(i,j)∈Acirc

vnew
ij

∑
k∈E:(j,k)∈A

wk(x̃k − πk)

is minimal, where x̃k = max(πk + dk, max(πj + dj , xi + L(i,j)) + L(j,k) + d(j,k)).
4 if vold ̸= vnew then
5 Solve (DM-fix)(vnew). Let (x̄, ȳ) be an optimal solution and z̄ the optimal

objective value.
6 if z̄ < z̃ then
7 vold = vnew, x = x̄, y = ȳ, z̃ = z̄

8 else
9 return (x, y, vold)

10 end
11 else
12 return (x, y, vold)
13 end
14 end

min
∑

i∈El+
all

wi(xl
i − πi) + T

∑
a∈Al+

transfer

waya (DM-opt-l-all)

xl
i = xl−1

i i ∈ E l
end (11)

xl
i ≥ πi + di i ∈ E l+

all\E l
end (12)

xl
j − xl

i ≥ La + da a = (i, j) ∈ Al+

train (13)

Mya + xl
j − xl

i ≥ La a = (i, j) ∈ Al+

transfer (14)

xl
j − xl

i ≥ La a = (i, j) ∈ (Al+

circ\Al
circ) ∩ Afix

circ (15)
M(1 − vij) + xl

j − xl
i ≥ La a = (i, j) ∈ Al

circ (16)∑
i∈El

end:(i,j)∈Acirc

vij = 1 j ∈ E l
start (17)

∑
j∈El

start:(i,j)∈Acirc

vij = 1 i ∈ E l
end (18)

xl
i ∈ N i ∈ E l+

all (19)

ya ∈ {0, 1} a ∈ Al+

transfer (20)
vij ∈ {0, 1} (i, j) ∈ Al

circ (21)
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Algorithm 2 Reachable-Events (RE).

Input : EAN N = (E , A), incidence vector vold of Afix
circ

Output : A feasible solution (x, y, v) of (DM-opt)

1 Solve (DM-fix)(vold). Let (x, y) be an optimal solution and z̃ the optimal objective
value.

2 for l in {1, . . . , lmax} do
3 Solve (DM-opt-l-all). Let (xl, yl, vl) be an optimal solution and vnew the

incidence vector of Acirc when replacing vold
ij by vl

ij for (i, j) ∈ Al
circ.

4 if vold ̸= vnew then
5 Solve (DM-fix)(vnew). Let (x̄, ȳ) be an optimal solution and z̄ the optimal

objective value.
6 if z̄ < z̃ then
7 vold = vnew, x = x̄, y = ȳ, z̃ = z̄

8 end
9 return (x, y, vold)

Algorithm 3 DM-VS.

Input : EAN N = (E , A), incidence vector vold of Afix
circ

Output : A feasible solution (x, y, v) of (DM-opt)

1 Solve (DM-fix)(vold). Let (x, y) be an optimal solution and z̃ the optimal objective
value.

2 while true do
3 Solve (VS)(x). Let vnew be the incidence vector of the corresponding circulation

activities.
4 if vold ̸= vnew then
5 Solve (DM-fix)(vnew). Let (x̄, ȳ) be an optimal solution and z̄ the optimal

objective value.
6 if z̄ < z̃ then
7 Set vold = vnew, x = x̄, y = ȳ, z̃ = z̄.
8 else
9 return (x, y, vold)

10 end
11 else
12 return (x, y, vold)
13 end
14 end
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B Data

Table 3 Size of the PTN in the used datasets.

Dataset Number of
stops

Number of
edges

Number of
OD-pairs

Number of
passengers

Athens 51 52 2385 63323
Göttingen 257 548 58226 406146
Germany 319 452 77878 4183088

Table 4 Size of the EAN in the used datasets.

Dataset |E| |Apure| |Acirc| |Afix
circ|

Athens 5551 7142 72535 387
Göttingen 17798 33318 81844 412
Germany 21466 46385 30428 666

Table 5 Parameters for the delay generation and the resulting sum of delays for the used datasets.

Setting Interval for
source delays (s)

% of events/ activities
with source delay

Sum of source delays
Athens Göttingen Germany

1 [60, 900] 1% 42093 129015 144771
2 [60, 900] 3% 120616 389729 456749
3 [60, 900] 5% 202511 627346 752768
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