
Detection of Plagiarism in University Projects

Using Metrics-based Spectral Similarity

Ettore Merlo1

École Polytechnique de Montréal, Départment de Génie Informatique (DGI),
C.P. 6079, Succ. Centre Ville, Montréal, Québec H3C 3A7, Canada

ettore.merlo@polymtl.ca

Abstract. An original method of spectral similarity analysis for plagia-
rism detection in university project is presented. The approach is based
on a clone detection tool called CLAN that performs metrics based sim-
ilarity analysis of source code fragments. Definitions and algorithms for
spectral similarity analysis are presented and discussed. Experiments
performed on university projects are presented. Experimental results
include the distribution of similarity in C and C++ projects. Analy-
sis of spectral similarity distribution identifies the most similar pairs of
projects that can be considered as candidates for plagiarism.

Keywords. plagiarism detection, software comparison, clone detection,
spectral analysis, code metrics

1 Introduction

The identification of similarity between code fragments can be based on compar-
ing information derived from syntactic analysis or it can be based on character
string comparison from the source code text. This paper presents plagiarism
analysis performed by a tool called CLAN (CLone ANalyzer) that computes
code fragments similarities by considering syntactically driven software metrics.

Similarity analysis using software metrics requires that each fragment be
characterized by a set of features measured by metrics such as the number of
passed parameters, the number of statements, cyclomatic complexity, and so on.

Metrics computation requires the parsing of source code to identify inter-
esting fragments, which often are associated to software functions, and extract
software metrics. For sake of completeness the details of each step are briefly
summarized below.

Clones are defined as code fragments indistinguishable under a given crite-
rion. Different granularities may be considered when extracting clone informa-
tion (e.g., compound statement or function body). The process defined to study
clone evolution is outlined in Figure 1 and consists of the following, subsequent
phases:

Dagstuhl Seminar Proceedings 06301
Duplication, Redundancy, and Similarity in Software
http://drops.dagstuhl.de/opus/volltexte/2007/986

2 E. Merlo

1. Handling of preprocessor directives;

2. Parsing and fragments identification;

3. Metrics extraction; and

4. Clone identification.

IDENTIFICATION

FUNCTION METRICS

COMPUTATION

IDENTIFICATION
CLUSTERS

CLONE

������
���
������
���

������
���
������
���

������
���
������
���

���������������
���������������

	�	�		�	�		�	�	

�

�

�

�����
�����
��
��

������
���
������
���

SOURCE

FILES

CLONING RATIO

COMPUTATION

OF THE

PERCENTAGE

CLONING

STATISTICS

CLONE CLUSTERS

PREPROCESSOR
DIRECTIVES

HANDLING OF

Fig. 1. The clone identification process.

Section 2 describes metrics based spectral similarity analysis. Section 3 dis-
cusses experiments and results, while conclusions can be found in Section 4.

2 Metrics Based Spectral Similarity Analysis

2.1 Parsing and fragments Identification

C and C++ systems are likely to encompass a variety of inter-mixed program-
ming styles, programming patterns, idioms, coding standards and naming con-
ventions. Most noticeably, both the ANSI-C and the Kernigham & Ritchie style
will possibly be present. To localize and extract function definitions, we adopted
an approach inspired by island-driven parsing: once islands (e.g., the function
bodies or the signatures) were identified, the in-between code was scanned, and
function definitions extracted by means of a hand-coded parser.

Plagiarism 3

2.2 Metrics extraction

Following the approach proposed in [1], the functions extracted as illustrated
above were compared on the basis of software metrics accounting for layout, size,
control flow, function communication and coupling. In particular, each fragment
was modeled by the following seven software metrics:

– number of function calls (CALLS)
– number of used or defined local variables (LOCALS)
– number used or defined non-local variables (NONLCALS)
– number of parameters (PARNUM)
– number of statements (STMNT)
– number of branches (NBRANCHES)
– number of loops (NLOOPS)

Metrics extraction can be performed in a time linear with respect to the
number of fragments. Different sets of metrics could indeed be adopted (e.g.,
those used in [1]). However, we experienced that, on sufficiently large systems,
the use of different sets of metrics does not significantly influence the results.
Additionally, for the experiments on C++ programs, six metrics only have been
used, since the number used or defined non-local variables was not used.

It is worth noticing that the proposed software metrics are not tied to a
specific fragment similarity approach and those presented in [2,3,4,5,6,7,1,8]
could be used in an almost interchangeable way.

Differently from the procedure customarily followed in the past, (e.g., in [1]),
function names and file/unit names were not used as metrics.

2.3 Thresholds-based Quantized Matching Approach

Let:
fragments = (f1, ..., fM)

metrics =

m1,1, ..., m1,k

m2,1, ..., m2,k

...
mM,1, ..., mM,k

thresholds = (th1, ..., thk)
clusters = {cli | cli ∈ P(fragments)}

(1)

where P(fragments) is the power set of the set of fragments, be respectively the
set of code fragments, the metrics matrix in which rows correspond to fragments
and columns to metrics dimensions, the active dimensions on which similarity
has to be measured, the matching thresholds for all dimensions, and the clusters
of detected clones.

4 E. Merlo

An original algorithm for threshold based clone quantization is presented in
Figure 2, where:

qClusters = {cli | cli ∈ P(fragments)}
kSet : fragments ×Nm, m ∈ N

(2)

Code fragments which belong to the same cluster returned by
computeQClusters are considered similar under the given threshold sensitive
criterion. Quantized clone clusters represent a partition of all fragments. In par-
ticular, fragments which belong to the same cluster identified by a key belonging
to kSet satisfy the property that fragments corresponding to the metrics vec-
tor belong to the same hyper-parallelepiped identified by the following multi-
dimensional interval:

[kSet[f][1] · th[1], (kSet[f][1] + 1) · th[1]] ×
... ×

[kSet[f][i] · th[i], (kSet[f][i] + 1) · th[i]] ×
... ×

[kSet[f][n] · th[n], (kSet[f][n] + 1) · th[n]]

(3)

Execution time complexity of the clone quantization algorithm shown in Fig-
ure 2 is O(M · n), where M is the number of fragments and n is the number
of active dimensions. Since n is often kept constant with respect to the number
of fragments M , once the matching strategy has been decided, and also often
(n � M) and it is small, execution time complexity can be considered linear in
terms of the number of fragments, i.e., it is O(M).

1 (qClusters, kSet)← computeQClusters(fragments, metrics, thresholds)

2 qClusters.clear()
3 forall f ∈ fragments
4 i = 1
5 key = ()
6 while (i ≤ metrics[f].size())
6 if thresholds[i] > ε
7 code = int(metrics[f][i] / thresholds[i]))
6 else
7 code = int(metrics[f][i])
8 key.append(code)
9 i = i + 1
10 kSet[f] = key
11 qClusters[key] = qClusters[key] ∪ {f}
12 return (qClusters, kSet)

Fig. 2. Threshold-Based Clone Quantization

Plagiarism 5

Figure 3 shows the original spectral analysis based on threshold clone quanti-
zation that is used to compute the similarity between two projects. The rationale
for spectral analysis is that plagiarism is hard to deeply hide, if little program-
ming energy is deployed. Surface differences are quickly ignored by thresholds of
increasing levels

1 projectSimilarity ← computeSpectrum(fragments1, fragments2,
metrics1, metrics2,
thIncrements)

2 projectSimilarity = 0
3 for step ∈ [0..MAX STEPS]
4 for dim ∈ [0..MAX DIM]
5 curThresholds[dim] = step ∗ thIncrements[dim]
6 (qClusters1, kSet1) = computeQClusters(fragments1, metrics1,

curThresholds)
7 (qClusters2, kSet2) = computeQClusters(fragments2, metrics2,

curThresholds)
8 common = 0
9 forall k ∈ kSet1 | k ∈ kSet2

10 common = common + | qClusters1[k] | + | qClusters2[k] |
10 projectSimilarity = projectSimilarity +

+ common / (| fragments1 | + | fragments2 |)
13 return projectSimilarity

Fig. 3. Spectral analysis

Quantizing the hyper-volume of the clone pseudo-space introduces a quanti-
zation error, which is reflected by the fact that two fragments in different clusters
may indeed be closer than the threshold and therefore introduce false negatives
in the clone analysis. However, in spectral similarity analysis, quantization error
at step s and threshold s · thi in dimension i is (s · thi) / 2 and eventually cancels
out at step s

′

>= 2 · s corresponding to threshold s
′

· thi = 2 · s · thi.

A typical trend in spectral analysis is shown in Figure 4. The high quickly
saturating curve is an example of the spectrum obtained by comparing two
projects that show high similarity. At threshold 0 the two projects are not similar,
but as the threshold increases, the similarity increases too and quite rapidly.
Conversely, the lower curve represents two projects that are not similar. At null
threshold similarity is null and it remains low for increasing threshold values. As
expected, for high threshold values, also non-similar projects show high similarity
values. What allows us to easily distinguish between the two cases, are not
necessarily the absolute values of similarities, but rather the remarkably different
trend of similarities with respect to increasing threshold values. Spectral analysis
computes an approximation of the surface underlying a given similarity curve.

6 E. Merlo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
im

ila
rit

y

Threshold

Spectral Analysis

Fig. 4. Typical spectra

Figure 5 shows the algorithm to compute spectral similarity on all pairs of
projects. The algorithm computes the spectral similarity between all pairs of
different projects and returns the sorted by similarity list of all pairs of projects.

1 similarityList← computeProjectSimilarity(projects, thIncrements)

2 forall pi ∈ projects
3 forall pj ∈ projects | j > i
4 similarity = computeSpectrum(fragmentsi, fragmentsj,

metricsi, metricsj,
thIncrements)

5 similarityList.add(similarity, i, j)
6 similarityList.sort()
7 return similarityList

Fig. 5. Plagiarism analysis

Complexity of algorithm in Figure 5 is quadratic on the number of distinct
projects. The quadratic complexity can be reduced to a linear one by using
the algorithm in Figure 6 that implements an approximated approach based on
astrophysics modeling of galaxies and that has been described in [9] in details.
The algorithm computes the center of mass of projects based on their fragments’

Plagiarism 7

metrics. Spectral analysis is subsequently performed by clustering centers of mass
descriptions along different incremental threshold levels.

1 similarityList← computeGalacticProjectSimilarity(projects,
thIncrements)

2 forall pi ∈ projects
3 projectSimilarity[pi] = 0
4 descr[i]← centerOfMass(pi)
5 for step ∈ [0..MAX STEPS]
6 for dim ∈ [0..MAX DIM]
7 curThresholds[dim] = step ∗ thIncrements[dim]
8 (qClusters, kSet) = computeQClusters(projects, descr[i],

curThresholds)
9 forall k ∈ kSet

10 forall pk ∈ qClusters[k]
11 projectSimilarity[pk] = projectSimilarity[pk] +

+ | qClusters[k] |
12 forall pj ∈ projects
13 similarityList.add(projectSimilarity[pj], pj)
14 similarityList.sort()
15 return similarityList

Fig. 6. Galactic Plagiarism Analysis

Similarity list as computed by the galactic spectral similarity analysis al-
gorithm reported in Figure 6 returns the pairs of similar projects sorted by
similarity order.

Complexity of galactic spectral similarity analysis is linear on the number of
projects and the linear factor is affected by the number of metric dimensions and
by the number of steps. Often the number of metric dimensions and the number
of steps are much smaller than the number of projects, so the algorithm can be
thought as linear on the number of projects.

3 Experiments and Discussion

Figure 7 shows the results obtained after similarity analysis of pairs of projects
written in C language, while Figure 7 shows the results obtained for projects
written in C++. Results have been computed using the algorithm in Figure 5.

8 E. Merlo

Metrics Threshold increments

CALLS 1
LOCALS 1

NONLCALS 1
PARNUM 1
STMNT 3

NBRANCHES 1
NLOOPS 1

Table 1. Metrics and threshold increments

 1

 10

 100

 1000

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
eq

ue
nc

y

Similarity

C Project similarity distribution

Fig. 7. C project distribution

Plagiarism 9

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Fr
eq

ue
nc

y

Similarity

OO Project similarity distribution

Fig. 8. C++ project distribution

Similarity contrast is very good for procedural code, while distribution of sim-
ilarity for C++ code is less sharp. This can be partially explained since reference
classes were given to all students as a part of the projects, so C++ projects are
biased towards higher average similarity than C projects. Furthermore, C++
methods tend to be smaller than average natural C functions and so chances of
similarity in terms of similar metrics value are more often occurring.

To sharpen the contrast between C++ and C class structure should be in-
vestigated and taken into consideration and also inter-class relationship could
be studied.

Outliers of similarity distribution in the high end were identified so that the
most similar projects under metrics-based spectral analysis were identified.

A DP-matching based project pairs alignment and visualization process [7]
was performed on most similar projects to ease the human inspection of simi-
larities.

No hypothesis about the causes of similarity were made, but identified cases
were transmitted to the university administration for follow up.

4 Conclusions

A metrics based plagiarism detection approach in an academic environment has
been presented The presented approach has been successfully used to discourage
plagiarism in course projects

10 E. Merlo

CLAN is a very fast, small memory, accurate, but conservative tool. The
authors are quite happy with the proven CLAN performance in terms of speed
and also of robustness to parse and analyze code.

CLAN can be recommended in applications were speed and precision make
its use advantageous. We can think of routinely performed analyses during devel-
opment and of interactive environments possibly to support agile development.
Also, when very large applications need to be processed CLAN family of tools
which includes the “galactic clone detection” [9] for object oriented systems is
appropriate for scalability.

Acknowledgment

The research on CLAN has been funded in part by the National Sciences and
Engineering Research Council of Canada and Bell Canada.

References

1. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of func-
tion clones in a software system using metrics. In: Proceedings of the International
Conference on Software Maintenance - IEEE Computer Society Press, Monterey,
CA (1996) 244–253

2. Baker., B.: On finding duplication and near-duplication in large software systems.
In: Proceedings of the Working Conference on Reverse Engineering. (1995)

3. Baxter, I., Yahin, A., Moura, l., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: Proceedings of the International Conference on Software
Maintenance - IEEE Computer Society Press. (1998) 368–377

4. Buss, E., De Mori, R., Gentleman, W., Henshaw, J., Johnson, H., Kontogiannis, K.,
Merlo, E., Muller, H., Mylopoulos, J., Paul, S., Prakash, A., Stanley, M., Tilley, S.,
Troster, J., Wong, K.: Investigating reverse engineeering technologies for the cas
program understanding project. IBM Systems Journal 33 (1994) 477–500

5. Johnson, J.H.: Identifying redundancy in source code using fingerprints. In: CAS-
CON. (1993) 171–183

6. Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: A multi-linguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software
Engineering 28 (2002) 654–670

7. Kontogiannis, K., De Mori, R., Bernstein, R., Galler, M., Merlo, E.: Pattern match-
ing for clone and concept detection. Journal of Automated Software Engineering 3

(1996) 77–108
8. McCabe, T.: Reverse engineering, reusability, redundancy: the connection. Ameri-

can Programmer 3 (1990) 8–13
9. Merlo, E., Antoniol, G., DiPenta, M., Rollo, F.: Linear complexity object-oriented

similarity for clone detection and software evolution analysis. In: Proceedings of the
International Conference on Software Maintenance - IEEE Computer Society Press,
IEEE Computer Society Press (2004) 412–416

	Detection of Plagiarism in University Projects Using Metrics-based Spectral Similarity
	Ettore Merlo

