
Open Problems
Moderately Exponential Time Algorithms

Seminar 08431

Fedor V. Fomin, Petteri Kaski, Mikko Koivisto, Lukasz Kowa-
lik, Dieter Kratsch, Yoshio Okamoto, Johan van Rooij, and Ryan
Williams

Fedor Fomin Subgraph Isomorphism.
In Subgraph Isomorphism problem we are given two graphs G and

F , and the question is to decide if G contains F as a subgraph. There are
many important special cases of this problem like Hamiltonian Cycle
or Bandwidth, that can be solved in time 2O(n), where n is the number of
vertices in G. However, no such algorithm with such a running time is known
for Subgraph Isomorphism. Even the existence of such an algorithm for
the special case when the maximum vertex degree of F is at most 3 is open.

Johan van Rooij Pathwidth of sparse graphs.
Many graph problems can be solved in moderately exponential time on

graphs of bounded degree. One approach is to create a path decomposition
of these graphs and then solve the problem by dynamic programming. For
cubic n-vertex graphs Fomin et al. proved that for large enough graphs
the pathwidth can be bounded by n

6
and for maximum degree four graphs

by n
3
. Recent results by Rossmanith show that a number of problems can

be solved in the same exponential time on tree decompositions as on path
decompositions.

This leads to the natural question: does there exists similar but stronger
bounds on the treewidth of bounded degree graphs for which a tree decompo-
sition can be found in polynomial time? Also, can we derive stronger bounds
on the treewidth or pathwidth of bounded degree bipartite graphs?

Johan van Rooij Capacitated domination. There are many NP-hard
graph problems that can trivially be solved in O(2nnO(1)) by enumerating
all vertex subsets, checking for each subset whether it satisfies certain prop-
erties in polynomial time, and returning the smallest or largest such subset.
Many such problems such as Independent Set or Dominating Set can

1

Dagstuhl Seminar Proceedings 08431
Moderately Exponential Time Algorithms
http://drops.dagstuhl.de/opus/volltexte/2008/1798

actually be solved much faster, while other problems such as Capacitated
Dominating Set seem to be stuck to this 2n barrier.

In the capacitated domination problem each vertex v is supplied with a
number cv; this vertex can dominate only at most cv vertices in its neigh-
bourhood. It is not surprising that we cannot do better than 2n for this
problem yet (this was given as an open problem at IWPEC 2008) since the
polynomial time algorithm verifying that a given vertex subset is a capaci-
tated dominating set involves a flow algorithm or bipartite matching which
is more complicated than simple neighbourhood observations as is the case
for an independent set or a dominating set.

Johan van Rooij Irredundant Set. Consider the Irredundant Set
problem. An irredundant set can be described in the following way. Consider
a number of kings we want to place on the vertices our graph (the irredun-
dant set vertices). A king claims his own vertex and all its neighbours as its
own, but a king only has right of existence if he can rule some undisputed
vertex of his own. For example, a king has no right of existence if all its
neighbouring vertices contain a king, or if has one neighbouring king (which
puts his own vertex in dispute) and all other neighbouring vertices also have
some neighbour with a king. For positive examples, take any independent
set or any inclusion minimal dominating set.

When looking at the 2n vertex subset problems, the Irredundant Set
problem lies in between both worlds: it can be verified that vertex subset is
an irredundant set by only considering its distance two neighbourhood, while
we were unable to solve this problem faster than O(2nnO(1)). Therefore, we
post it as an open problem to compute the upper or lower irredundance
numbers of a graph faster than O(2nnO(1)): the largest irredundant set or
the smallest inclusion maximal irredundant set.

We note that the irredundance numbers are not just any numbers to
compute: they have been studied extensively in graph theory before. For
example, consider the (by some well known) chain:

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G)

Where α(G) is the cardinality of a maximum independent set of G, i(G) is
the cardinality of a minimum inclusion maximal independent set of G, γ(G)
is the cardinality of the minimum dominating set of G, Γ(G) is the cardinality
of a maximum inclusion minimal dominating set of G, and ir(G) and IR(G)

2

correspond to the lower and upper irredundance numbers or G, respectively.
Finally, irredundance is the property that makes a dominating set inclusion
minimal.

Petteri Kaski Counting edge-colorings of the complete graph. A complete
graph K2n always admits a coloring of its edges with colors {1, 2, . . . , 2n−1}
so that edges sharing an endvertex have distinct colors.

Question 1. Can one count the number of distinct edge-colorings of K2n in
time 2o(n2)?

Remark. An algorithm with O∗(2n(n−1)/2) running time follows by counting
the vertex-colorings of the line graph of K2n with 2n − 1 colors. See

• A. Björklund, T. Husfeldt, M. Koivisto, Set partitioning via inclusion-
exclusion, SIAM J. Comput., to appear.

Question 2. What is the number of edge-colorings for 2n = 16?

Remark. For 2n = 14 the number is

13! · 98758655816833727741338583040

= 614972203951464612786852376432607232000.

See

• P. Kaski, P. R. J. Österg̊ard, There are 1,132,835,421,602,062,347 non-
isomorphic one-factorizations of K14, J. Combin. Designs, to appear.
doi: 10.1002/jcd.20188

Petteri Kaski Disjoint triples of subsets. Let U be an n-element set.
Denote by

(
U
k

)
the set of all k-subsets of U . Given F1,F2,F3 ⊆ (

U
k

)
as

input, the task is to determine whether there exists a triple (X1, X2, X3) ∈
F1 × F2 ×F3 with X1 ∩ X2 = X1 ∩ X3 = X2 ∩ X3 = ∅.
Question. For which values of 1/4 ≤ α ≤ 1/3 and k = αn does there exist
an algorithm with running time O((2− εα)n), with εα > 0 independent of n?

Remarks. A positive answer for α = 1/3 implies an O((2 − ε)n) algorithm
for the Hamilton Cycle/Path problem. For α < 1/4 a positive answer is
obtained by combining a trimmed fast subset convolution of f1, f2 with the
fast intersection transform of f3, where f1, f2, f3 are indicator functions of
F1,F2,F3. See

3

• A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets
Möbius: fast subset convolution, Proceedings of the 39th Annual ACM
Symposium on Theory of Computing (San Diego, CA, June 11-13,
2007), Association for Computing Machinery, New York, 2007, pp. 67-
74;

• A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Trimmed Moebius in-
version and graphs of bounded degree, Proceedings of the 25th Annual
Symposium on Theoretical Aspects of Computer Science (Bordeaux,
February 21-23, 2008) (S. Albers and P. Weil, Eds.), IBFI Schloss
Dagstuhl, Wadern, Germany, 2008, pp. 85-96;

• A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, The fast intersection
transform with applications to counting paths, arXiv:0809.2489.

Dieter Kratsch Number of minimal dominating sets.
Let ds(n) be the maximum number of minimal dominating sets in a graph

on n vertices. It is known that ds(n) ≥ 15n/6 ≥ 1.5704n. Fomin, Grandoni,
Pyatkin and Stepanov showed that ds(n) ≤ 1.7159n by means of a moderately
exponential-time algorithm enumerating all minimal covers of a set cover
instance.

• Determine ds(n). For which value of α is ds(n) ≈ αn?

Dieter Kratsch Partition into increasing or decreasing subsequences.
The problem to partition a permutation into the smallest possible number

of increasing or decreasing subsequences is known to be NP-hard. When
combining two old results on the problem one obtains a subexponentional
time algorithm (of running time O(n

√
2n)) to solve the problem.

• Can you find a faster subexponential time algorithm for the problem?

• Is the problem fixed-parameter tractable when the parameter is the
number of increasing or decreasing subsequences in the partition?

Mikko Koivisto Reducibility among Problems in 2n.
For some extensively studied problems—such as TSP, Graph Coloring,

#Hamiltonian Cycles, Permanent—the fastest algorithms currently known
require time 2npoly(n). Show that if one of these problems can be solved in

4

time cn for some c < 2, then also the other problems in ”the class” can be
solved in time dn for some d < 2.

Daniel Paulusma Disconnected Cut. Let G = (V, E) be a finite, undi-
rected, connected graph without multiple edges and without loops. Let
U ⊂ V . Then G[U] denotes the subgraph of G induced by U . We say
that U is a disconnected cut if both G[U] and G[V \U] are disconnected.

What is the computational complexity of the following problem?

Disconnected Cut
Instance: A graph G = (V, E) (of diameter 2)
Question: Does G have a disconnected cut?

Saying that a graph G = (V, E) has a disconnected cut is equivalent to saying
that

• V can be partitioned into four nonempty sets V1, V2, V3, V4 such that
there is no edge uv ∈ E with uv ∈ (V1 × V3) ∪ (V2 × V4);

• G allows a vertex-surjective homomorphisms to the reflexive four-cycle
(a cycle on four vertices with a self-loop in every vertex);

• G = (V, {uv | uv /∈ E}) allows a spanning subgraph that consists of two
bicliques, i.e., two nontrivial vertex-disjoint complete bipartite graphs.

Ryan Williams Solving k-path in O∗(2k) time deterministically.
Can the k-path problem be solved in O∗(2k) time, deterministically? The

approach will probably have to be quite different from the known randomized
algorithm, since that uses polynomial identity testing as a key subroutine.

Ryan Williams Hybrid algorithm for vertex cover. A hybrid algorithm (cf.
Vassilevska-Williams-Woo, SODA’06) is a collection of three algorithms A1,
A2, A3, with the following curious property. A1 is a polytime algorithm that
always returns “approximate” or “exact”. A2 is a polytime approximation
algorithm that only works on some inputs. A3 is an exact (exponential)
algorithm that only works on some inputs.

On each instance x of a problem,

• if A1(x) = “approximate” then A2(x) approximately solves instance x.

5

• if A1(x) = “exact” then A3(x) exactly solves instance x.

The overall research goal in hybrid algorithms is to find those that beat
the worst case inapproximability with A2, and get subexponential time with
A3. For example, there is a hybrid algorithm for Maximum Independent
Set for all ε > 0 with the property that if A2 runs then it outputs an n1−ε-
approximation in polytime, and if A3 runs then it outputs a maximum in-
dependent set in 2ε′n time, where ε′ decreases as ε decreases. Neither of
these two cases are expected to be achievable on all inputs, unless some very
surprising things happen. In other words, the set of graphs for which it is
hard to approximate Independent Set is a subset of those graphs for which
a maximum independent set can be found rather quickly!

In general, hybrid algorithms help us get a better understanding of the
relationships between hardness of approximation and hardness of exact so-
lution. The major open problem here is to obtain a hybrid algorithm for
Vertex Cover: is there a hybrid algorithm for Vertex Cover which either
approximately solves within a (2 − ε) factor in polynomial time, or exactly
solves in 2ε′n time, for ε′ which decreases as ε decreases? Or, is there some
plausible evidence that no such hybrid algorithm exists? (Does ETH fail if
the algorithm exists?)

Lukasz Kowalik Edge coloring
In the edge coloring problem, the input is an undirected graph G of n

vertices and m edges and the goal is to assign colors to edges so that incident
edges get distinct colors. The number of distinct colors used should be as
small as possible.

Clearly, one can reduce this problem to a vertex-coloring problem, by
making a new graph G′ (called line graph) with vertices corresponding to
edges of G and such that two vertices in G′ are adjacent if the relevant edges
in G′ are incident. Vertex-coloring G′ using k colors is equivalent to edge-
coloring G using k colors. It follows that we can solve the edge coloring
problem in O(2m)-time and space by the algorithm of Björklund, Husfeldt
and Koivisto [FOCS 2006].

On the other hand, there was some work on edge-coloring cubic graphs:
Eppstein and Beigel [J. Algorithms 2005] gave an O(1.415n)-time algorithm
and later Kowalik [WG 2006] gave an O(1.344n)-time algorithm. Both these
algorithm use the special properties of the edge coloring problem (in other
words, they use the structure of the line graph).

6

The first open problem is giving an algorithm for a general case that is
substantially faster than a current best vertex-coloring algorithm applied to
the line graph, in other words an algorithm for general graphs which uses the
structure of the line graph.

The second open problem here is the question whether one can solve
the (general) edge-coloring problem in O(cn) time, for some constant c. We
believe that such an algorithm does not exist, and the goal is to prove it
under some complexity hypothesis (like ETH).

Yoshio Okamoto Bicriteria Minimum-Cost Spanning Tree Problem.

Input: A connected undirected graph G = (V, E), two non-negative edge
costs c1, c2 : E → R, and two non-negative real numbers b1, b2 ∈ R.

Output: Yes if there exists a spanning tree T of G such that
∑

e∈T c1(e) ≤
b1 and

∑
e∈T c2(e) ≤ b2; No otherwise.

Question: Devise an algorithm for the problem above running in O∗(c|E|)
with c < 2.

Remark: The problem itself is known to be NP-complete (via the reduction
of the partition problem) [P. Camerini, G. Galbiati, and F. Maffioli.
in Theory of Algorithms, North-Holland, Amsterdam.] There are a
pseudo-polynomial-time algorithm using the idea from Barahona and
Pulleyblank [Disc. Appl. Math. 1987], and a polynomial-time approx-
imation scheme by Goemans and Ravi [SWAT 1996] (for the definition
of a polynomial-time approximation scheme for bicriteria problems, see
their paper). As far as I know, the problem has not been studied in the
context of moderately exponential-time algorithms. We only know the
trivial algorithm that enumerates all spanning trees of a given graph.

Yoshio Okamoto Forest Counting in Graph Classes

Input: A undirected graph G = (V, E) from a fixed graph class G.

Output: The number of forests in G. Here, a forest means an edge-subset
F ⊆ E that does not embrace any cycle.

Question: Is the problem #P-complete or polynomial-time solvable when G
is the class of cographs? What if G is the class of unit interval graphs?

7

Remark: The case of cographs was studied by Giménez, Hliněný, and Noy
[SIAM J. Disc. Math. 2006)], and they gave an exact algorithm running
in O∗(exp(|V |1/3)) time. The case of unit interval graphs was studied
by Gebauer and Okamoto [Intern. J. of Foundation of Comp. Sci.,
to appear], and they gave an exact algorithm running in O∗(1.9706|E|)
time. They also prove that the problem is #P-complete when G is the
class of chordal graphs.

8

